Li Miaomiao, Liu Xinwang, Zhang Yi, Liang Weixuan
IEEE Trans Neural Netw Learn Syst. 2024 Jul;35(7):9417-9427. doi: 10.1109/TNNLS.2022.3233179. Epub 2024 Jul 8.
Multiview clustering (MVC) sufficiently exploits the diverse and complementary information among different views to improve the clustering performance. As a representative algorithm of MVC, the newly proposed simple multiple kernel k -means (SimpleMKKM) algorithm takes a min-max formulation and applies a gradient descent algorithm to decrease the resultant objective function. It is empirically observed that its superiority is attributed to the novel min-max formulation and the new optimization. In this article, we propose to integrate the min-max learning paradigm adopted by SimpleMKKM into late fusion MVC (LF-MVC). This leads to a tri-level max-min-max optimization problem with respect to the perturbation matrices, weight coefficient, and clustering partition matrix. To solve this intractable max-min-max optimization problem, we design an efficient two-step alternative optimization strategy. Furthermore, we analyze the generalization clustering performance of the proposed algorithm from the theoretical perspective. Comprehensive experiments have been conducted to evaluate the proposed algorithm in terms of clustering accuracy (ACC), computation time, convergence, as well as the evolution of the learned consensus clustering matrix, clustering with different numbers of samples, and analysis of the learned kernel weight. The experimental results show that the proposed algorithm is able to significantly reduce the computation time and improve the clustering ACC when compared to several state-of-the-art LF-MVC algorithms. The code of this work is publicly released at: https://xinwangliu.github.io/Under-Review.
多视图聚类(MVC)充分利用不同视图之间多样且互补的信息来提升聚类性能。作为MVC的一种代表性算法,新提出的简单多核k均值(SimpleMKKM)算法采用了最小-最大公式,并应用梯度下降算法来降低由此产生的目标函数。根据经验观察,其优越性归因于新颖的最小-最大公式和新的优化方法。在本文中,我们提议将SimpleMKKM采用的最小-最大学习范式集成到后期融合MVC(LF-MVC)中。这导致了一个关于扰动矩阵、权重系数和聚类划分矩阵的三级最大-最小-最大优化问题。为了解决这个棘手的最大-最小-最大优化问题,我们设计了一种高效的两步交替优化策略。此外,我们从理论角度分析了所提算法的泛化聚类性能。我们进行了全面的实验,以在聚类准确率(ACC)、计算时间、收敛性以及学习到的共识聚类矩阵的演变、不同样本数量的聚类和学习到的核权重分析等方面评估所提算法。实验结果表明,与几种先进的LF-MVC算法相比,所提算法能够显著减少计算时间并提高聚类ACC。这项工作的代码已在以下网址公开发布:https://xinwangliu.github.io/Under-Review 。