Suppr超能文献

从稳态下单细胞的随机转录变化推断基因调控。

Inferring gene regulation from stochastic transcriptional variation across single cells at steady state.

机构信息

Broad Institute of MIT and Harvard, Cambridge, MA 02142.

Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115.

出版信息

Proc Natl Acad Sci U S A. 2022 Aug 23;119(34):e2207392119. doi: 10.1073/pnas.2207392119. Epub 2022 Aug 15.

Abstract

Regulatory relationships between transcription factors (TFs) and their target genes lie at the heart of cellular identity and function; however, uncovering these relationships is often labor-intensive and requires perturbations. Here, we propose a principled framework to systematically infer gene regulation for all TFs simultaneously in cells at steady state by leveraging the intrinsic variation in the transcriptional abundance across single cells. Through modeling and simulations, we characterize how transcriptional bursts of a TF gene are propagated to its target genes, including the expected ranges of time delay and magnitude of maximum covariation. We distinguish these temporal trends from the time-invariant covariation arising from cell states, and we delineate the experimental and technical requirements for leveraging these small but meaningful cofluctuations in the presence of measurement noise. While current technology does not yet allow adequate power for definitively detecting regulatory relationships for all TFs simultaneously in cells at steady state, we investigate a small-scale dataset to inform future experimental design. This study supports the potential value of mapping regulatory connections through stochastic variation, and it motivates further technological development to achieve its full potential.

摘要

转录因子 (TFs) 与其靶基因之间的调控关系是细胞身份和功能的核心;然而,揭示这些关系通常是劳动密集型的,并且需要进行干扰。在这里,我们提出了一个原则性的框架,通过利用单细胞中转录丰度的固有变化,系统地推断稳态细胞中所有 TF 的基因调控。通过建模和模拟,我们描述了 TF 基因的转录爆发如何传播到其靶基因,包括预期的时间延迟范围和最大共变的幅度。我们将这些时间趋势与来自细胞状态的时不变共变区分开来,并阐明了在存在测量噪声的情况下利用这些微小但有意义的共波动的实验和技术要求。虽然当前的技术还没有足够的能力来明确地在稳态细胞中同时检测所有 TF 的调控关系,但我们研究了一个小规模的数据集,为未来的实验设计提供信息。这项研究支持通过随机变化来映射调控连接的潜在价值,并激励进一步的技术发展以充分发挥其潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8ea/9407670/6781f877ffcf/pnas.2207392119fig01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验