Suppr超能文献

基于矩量法的单细胞 RNA 测序数据分析差异表达方法。

Method of moments framework for differential expression analysis of single-cell RNA sequencing data.

机构信息

Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA.

Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA.

出版信息

Cell. 2024 Oct 31;187(22):6393-6410.e16. doi: 10.1016/j.cell.2024.09.044. Epub 2024 Oct 24.

Abstract

Differential expression analysis of single-cell RNA sequencing (scRNA-seq) data is central for characterizing how experimental factors affect the distribution of gene expression. However, distinguishing between biological and technical sources of cell-cell variability and assessing the statistical significance of quantitative comparisons between cell groups remain challenging. We introduce Memento, a tool for robust and efficient differential analysis of mean expression, variability, and gene correlation from scRNA-seq data, scalable to millions of cells and thousands of samples. We applied Memento to 70,000 tracheal epithelial cells to identify interferon-responsive genes, 160,000 CRISPR-Cas9 perturbed T cells to reconstruct gene-regulatory networks, 1.2 million peripheral blood mononuclear cells (PBMCs) to map cell-type-specific quantitative trait loci (QTLs), and the 50-million-cell CELLxGENE Discover corpus to compare arbitrary cell groups. In all cases, Memento identified more significant and reproducible differences in mean expression compared with existing methods. It also identified differences in variability and gene correlation that suggest distinct transcriptional regulation mechanisms imparted by perturbations.

摘要

单细胞 RNA 测序 (scRNA-seq) 数据的差异表达分析对于描述实验因素如何影响基因表达分布至关重要。然而,区分细胞间变异性的生物学和技术来源,以及评估细胞群之间定量比较的统计学意义仍然具有挑战性。我们引入了 Memento,这是一种用于从 scRNA-seq 数据中稳健高效地分析平均表达、变异性和基因相关性的差异分析工具,可扩展到数百万个细胞和数千个样本。我们将 Memento 应用于 70000 个气管上皮细胞,以鉴定干扰素反应基因;将其应用于 160000 个 CRISPR-Cas9 扰动 T 细胞,以重建基因调控网络;将其应用于 120 万个外周血单核细胞 (PBMC),以绘制细胞类型特异性数量性状基因座 (QTL);并将 CELLxGENE Discover 语料库中的 5000 万个细胞用于比较任意细胞群。在所有情况下,与现有方法相比,Memento 都能更准确地识别出差异表达的基因,且具有更高的重现性。它还识别出了变异性和基因相关性的差异,这表明扰动赋予了不同的转录调控机制。

相似文献

1
Method of moments framework for differential expression analysis of single-cell RNA sequencing data.
Cell. 2024 Oct 31;187(22):6393-6410.e16. doi: 10.1016/j.cell.2024.09.044. Epub 2024 Oct 24.
5
A survey of the methodological process of modeling, inference, and evaluation of gene regulatory networks using scRNA-Seq data.
Biosystems. 2025 Jul;253:105464. doi: 10.1016/j.biosystems.2025.105464. Epub 2025 May 21.
8
New insights for precision treatment of glioblastoma from analysis of single-cell lncRNA expression.
J Cancer Res Clin Oncol. 2021 Jul;147(7):1881-1895. doi: 10.1007/s00432-021-03584-9. Epub 2021 Mar 11.
9
Linking single-cell transcriptomes with secretion using SEC-seq.
Nat Protoc. 2025 Feb 20. doi: 10.1038/s41596-024-01112-w.

引用本文的文献

2
A practical guide to sequencing in neuropsychiatric research.
NPP Digit Psychiatry Neurosci. 2025;3(1):21. doi: 10.1038/s44277-025-00041-0. Epub 2025 Aug 8.
3
ARTP Mutagenesis of BZ103 to Enhance Laccase Activity and Transcriptomic Analysis of the Mutants.
J Microbiol Biotechnol. 2025 Jun 12;35:e2502014. doi: 10.4014/jmb.2502.02014.
5
ARID5A orchestrates cardiac aging and inflammation through MAVS mRNA stabilization.
Nat Cardiovasc Res. 2025 May;4(5):602-623. doi: 10.1038/s44161-025-00635-z. Epub 2025 Apr 29.

本文引用的文献

1
The expanding vistas of spatial transcriptomics.
Nat Biotechnol. 2023 Jun;41(6):773-782. doi: 10.1038/s41587-022-01448-2. Epub 2022 Oct 3.
2
Inferring gene regulation from stochastic transcriptional variation across single cells at steady state.
Proc Natl Acad Sci U S A. 2022 Aug 23;119(34):e2207392119. doi: 10.1073/pnas.2207392119. Epub 2022 Aug 15.
3
Mapping information-rich genotype-phenotype landscapes with genome-scale Perturb-seq.
Cell. 2022 Jul 7;185(14):2559-2575.e28. doi: 10.1016/j.cell.2022.05.013. Epub 2022 Jun 9.
4
Single-cell eQTL models reveal dynamic T cell state dependence of disease loci.
Nature. 2022 Jun;606(7912):120-128. doi: 10.1038/s41586-022-04713-1. Epub 2022 May 11.
5
Single-cell RNA-seq reveals cell type-specific molecular and genetic associations to lupus.
Science. 2022 Apr 8;376(6589):eabf1970. doi: 10.1126/science.abf1970.
6
Single-cell eQTL mapping identifies cell type-specific genetic control of autoimmune disease.
Science. 2022 Apr 8;376(6589):eabf3041. doi: 10.1126/science.abf3041.
7
Confronting false discoveries in single-cell differential expression.
Nat Commun. 2021 Sep 28;12(1):5692. doi: 10.1038/s41467-021-25960-2.
8
Ultra-high-throughput single-cell RNA sequencing and perturbation screening with combinatorial fluidic indexing.
Nat Methods. 2021 Jun;18(6):635-642. doi: 10.1038/s41592-021-01153-z. Epub 2021 May 31.
9
Separating measurement and expression models clarifies confusion in single-cell RNA sequencing analysis.
Nat Genet. 2021 Jun;53(6):770-777. doi: 10.1038/s41588-021-00873-4. Epub 2021 May 24.
10
Interferon lambda in inflammation and autoimmune rheumatic diseases.
Nat Rev Rheumatol. 2021 Jun;17(6):349-362. doi: 10.1038/s41584-021-00606-1. Epub 2021 Apr 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验