Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea.
Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
Proc Natl Acad Sci U S A. 2022 Aug 23;119(34):e2207408119. doi: 10.1073/pnas.2207408119. Epub 2022 Aug 15.
The xeroderma pigmentosum protein A (XPA) and replication protein A (RPA) proteins fulfill essential roles in the assembly of the preincision complex in the nucleotide excision repair (NER) pathway. We have previously characterized the two interaction sites, one between the XPA N-terminal (XPA-N) disordered domain and the RPA32 C-terminal domain (RPA32C), and the other with the XPA DNA binding domain (DBD) and the RPA70AB DBDs. Here, we show that XPA mutations that inhibit the physical interaction in either site reduce NER activity in biochemical and cellular systems. Combining mutations in the two sites leads to an additive inhibition of NER, implying that they fulfill distinct roles. Our data suggest a model in which the interaction between XPA-N and RPA32C is important for the initial association of XPA with NER complexes, while the interaction between XPA DBD and RPA70AB is needed for structural organization of the complex to license the dual incision reaction. Integrative structural models of complexes of XPA and RPA bound to single-stranded/double-stranded DNA (ss/dsDNA) junction substrates that mimic the NER bubble reveal key features of the architecture of XPA and RPA in the preincision complex. Most critical among these is that the shape of the NER bubble is far from colinear as depicted in current models, but rather the two strands of unwound DNA must assume a U-shape with the two ss/dsDNA junctions localized in close proximity. Our data suggest that the interaction between XPA and RPA70 is key for the organization of the NER preincision complex.
着色性干皮病蛋白 A(XPA)和复制蛋白 A(RPA)在核苷酸切除修复(NER)途径中预切口复合物的组装中发挥重要作用。我们之前已经描述了两个相互作用位点,一个位于 XPA N 端(XPA-N)无规卷曲结构域和 RPA32 C 端结构域(RPA32C)之间,另一个位于 XPA DNA 结合结构域(DBD)和 RPA70AB DBD 之间。在这里,我们表明,抑制这两个位点中任何一个的物理相互作用的 XPA 突变都会降低生化和细胞系统中的 NER 活性。在两个位点上组合突变会导致 NER 的附加抑制,这表明它们发挥不同的作用。我们的数据表明,XPA-N 与 RPA32C 之间的相互作用对于 XPA 与 NER 复合物的初始结合很重要,而 XPA DBD 与 RPA70AB 之间的相互作用对于复合物的结构组织以许可双切口反应是必需的。与模拟 NER 泡的单链/双链 DNA(ss/dsDNA)连接底物结合的 XPA 和 RPA 复合物的综合结构模型揭示了预切口复合物中 XPA 和 RPA 结构的关键特征。其中最重要的是,NER 泡的形状远非如当前模型所描绘的那样共线,而是两条解开的 DNA 链必须采用 U 形,两个 ss/dsDNA 连接点紧密靠近。我们的数据表明,XPA 和 RPA70 之间的相互作用对于 NER 预切口复合物的组织至关重要。