Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia.
Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia.
Biomolecules. 2024 Jul 9;14(7):814. doi: 10.3390/biom14070814.
Nucleotide excision repair (NER) is the most universal repair pathway, which removes a wide range of DNA helix-distorting lesions caused by chemical or physical agents. The final steps of this repair process are gap-filling repair synthesis and subsequent ligation. XPA is the central NER scaffolding protein factor and can be involved in post-incision NER stages. Replication machinery is loaded after the first incision of the damaged strand that is performed by the XPF-ERCC1 nuclease forming a damaged 5'-flap processed by the XPG endonuclease. Flap endonuclease I (FEN1) is a critical component of replication machinery and is absolutely indispensable for the maturation of newly synthesized strands. FEN1 also contributes to the long-patch pathway of base excision repair. Here, we use a set of DNA substrates containing a fluorescently labeled 5'-flap and different size gap to analyze possible repair factor-replication factor interactions. Ternary XPA-FEN1-DNA complexes with each tested DNA are detected. Furthermore, we demonstrate XPA-FEN1 complex formation in the absence of DNA due to protein-protein interaction. Functional assays reveal that XPA moderately inhibits FEN1 catalytic activity. Using fluorescently labeled XPA, formation of ternary RPA-XPA-FEN1 complex, where XPA accommodates FEN1 and RPA contacts simultaneously, can be proposed. We discuss possible functional roles of the XPA-FEN1 interaction in NER related DNA resynthesis and/or other DNA metabolic processes where XPA can be involved in the complex with FEN1.
核苷酸切除修复 (NER) 是最普遍的修复途径,可去除化学或物理因素引起的广泛的 DNA 螺旋扭曲损伤。该修复过程的最后步骤是填补缺口的修复合成和随后的连接。XPA 是中央 NER 支架蛋白因子,可参与切口后 NER 阶段。在受损链的第一次切口后加载复制机制,该切口由 XPF-ERCC1 核酸内切酶完成,形成由 XPG 内切核酸酶处理的受损 5'-flap。核酸内切酶 Flap1(FEN1)是复制机制的关键组成部分,对于新合成链的成熟是绝对不可或缺的。FEN1 还为碱基切除修复的长补丁途径做出贡献。在这里,我们使用一组含有荧光标记 5'-flap 和不同大小缺口的 DNA 底物来分析可能的修复因子-复制因子相互作用。检测到与每个测试 DNA 的三元 XPA-FEN1-DNA 复合物。此外,我们证明了由于蛋白质-蛋白质相互作用,在没有 DNA 的情况下 XPA-FEN1 复合物的形成。功能测定表明 XPA 适度抑制 FEN1 的催化活性。使用荧光标记的 XPA,可以提出形成三元 RPA-XPA-FEN1 复合物,其中 XPA 同时容纳 FEN1 和 RPA 接触。我们讨论了 XPA-FEN1 相互作用在 NER 相关 DNA 再合成和/或其他可能涉及 XPA 与 FEN1 形成复合物的 DNA 代谢过程中的可能功能作用。