Bintrim Sylvia J, Berkelbach Timothy C, Ye Hong-Zhou
Department of Chemistry, Columbia University, New York, New York 10027, United States.
Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, United States.
J Chem Theory Comput. 2022 Sep 13;18(9):5374-5381. doi: 10.1021/acs.jctc.2c00640. Epub 2022 Aug 15.
We present an algorithm and implementation of integral-direct, density-fitted Hartree-Fock (HF) and second-order Møller-Plesset perturbation theory (MP2) for periodic systems. The new code eliminates the formerly prohibitive storage requirements and allows us to study systems 1 order of magnitude larger than before at the periodic MP2 level. We demonstrate the significance of the development by studying the benzene crystal in both the thermodynamic limit and the complete basis set limit, for which we predict an MP2 cohesive energy of -72.8 kJ/mol, which is about 10-15 kJ/mol larger in magnitude than all previously reported MP2 calculations. Compared to the best theoretical estimate from literature, several modified MP2 models approach chemical accuracy in the predicted cohesive energy of the benzene crystal and hence may be promising cost-effective choices for future applications on molecular crystals.
我们提出了一种用于周期性体系的积分直接、密度拟合哈特里-福克(HF)和二阶莫勒-普莱塞特微扰理论(MP2)的算法及实现。新代码消除了以前过高的存储需求,使我们能够在周期性MP2水平上研究比以前大一个数量级的体系。通过在热力学极限和完备基组极限下研究苯晶体,我们证明了这一进展的重要性,对于苯晶体,我们预测其MP2内聚能为-72.8 kJ/mol,其绝对值比之前所有报道的MP2计算结果大约大10 - 15 kJ/mol。与文献中最佳理论估计相比,几种改进的MP2模型在预测苯晶体的内聚能方面接近化学精度,因此可能是未来用于分子晶体的具有成本效益的有前景选择。