Goldzak Tamar, Wang Xiao, Ye Hong-Zhou, Berkelbach Timothy C
Department of Chemistry, Columbia University, New York, New York 10027, USA.
Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, USA.
J Chem Phys. 2022 Nov 7;157(17):174112. doi: 10.1063/5.0119633.
We study the performance of spin-component-scaled second-order Møller-Plesset perturbation theory (SCS-MP2) for the prediction of the lattice constant, bulk modulus, and cohesive energy of 12 simple, three-dimensional covalent and ionic semiconductors and insulators. We find that SCS-MP2 and the simpler scaled opposite-spin MP2 (SOS-MP2) yield predictions that are significantly improved over the already good performance of MP2. Specifically, when compared to experimental values with zero-point vibrational corrections, SCS-MP2 (SOS-MP2) yields mean absolute errors of 0.015 (0.017) Å for the lattice constant, 3.8 (3.7) GPa for the bulk modulus, and 0.06 (0.08) eV for the cohesive energy, which are smaller than those of leading density functionals by about a factor of two or more. We consider a reparameterization of the spin-scaling parameters and find that the optimal parameters for these solids are very similar to those already in common use in molecular quantum chemistry, suggesting good transferability and reliable future applications to surface chemistry on insulators.
我们研究了自旋分量缩放二阶莫勒-普莱斯特定则微扰理论(SCS-MP2)在预测12种简单的三维共价和离子半导体及绝缘体的晶格常数、体模量和内聚能方面的性能。我们发现,SCS-MP2和更简单的缩放反自旋MP2(SOS-MP2)所给出的预测结果相较于MP2本身已有的良好性能有显著提升。具体而言,与包含零点振动校正的实验值相比,SCS-MP2(SOS-MP2)对于晶格常数的平均绝对误差为0.015(0.017)Å,对于体模量为3.8(3.7)GPa,对于内聚能为0.06(0.08)eV,这些误差比主要的密度泛函小约两倍或更多。我们考虑了自旋缩放参数的重新参数化,发现这些固体的最佳参数与分子量子化学中已普遍使用的参数非常相似,这表明具有良好的可转移性以及未来在绝缘体表面化学方面可靠的应用前景。