School of Computer Science and Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 171 77, Stockholm, Sweden.
Comput Biol Med. 2022 Sep;148:105944. doi: 10.1016/j.compbiomed.2022.105944. Epub 2022 Aug 10.
Brain medical imaging and deep learning are important foundations for diagnosing and predicting Alzheimer's disease. In this study, we explored the impact of different image filtering approaches and Pyramid Squeeze Attention (PSA) mechanism on the image classification of Alzheimer's disease. First, during the image preprocessing, we register MRI images and remove skulls, then apply median filtering, Gaussian blur filtering, and anisotropic diffusion filtering to obtain different experimental images. After that, we add the Squeeze and Excitation (SE) mechanism and Pyramid Squeeze Attention (PSA) mechanism to the Fully Convolutional Network (FCN) model respectively, to obtain each MRI image's corresponding feature information of disease probability map. Besides, we also construct Multi-Layer Perceptron (MLP) model's framework, combining feature information of disease probability map with age, gender, and Mini-Mental State Examination (MMSE) of each sample, to get the final classification performance of model. Among them, the accuracy of the MLP-C model combining anisotropic diffusion filtering with the Pyramid Squeeze Attention mechanism can reach 98.85%. The corresponding quantitative experimental results show that different image filtering approaches and attention mechanisms provide effective assistance for the diagnosis and classification of Alzheimer's disease.
脑医学影像和深度学习是诊断和预测阿尔茨海默病的重要基础。本研究探讨了不同图像滤波方法和 Pyramid Squeeze Attention(PSA)机制对阿尔茨海默病图像分类的影响。首先,在图像预处理过程中,我们对 MRI 图像进行配准并去除颅骨,然后应用中值滤波、高斯模糊滤波和各向异性扩散滤波,得到不同的实验图像。接着,我们分别在全卷积网络(FCN)模型中加入 Squeeze and Excitation(SE)机制和 Pyramid Squeeze Attention(PSA)机制,得到每个 MRI 图像的疾病概率图相应的特征信息。此外,我们还构建了多层感知机(MLP)模型的框架,将疾病概率图的特征信息与每个样本的年龄、性别和 Mini-Mental State Examination(MMSE)相结合,得到模型的最终分类性能。其中,结合各向异性扩散滤波和 Pyramid Squeeze Attention 机制的 MLP-C 模型的准确率可达 98.85%。相应的定量实验结果表明,不同的图像滤波方法和注意力机制为阿尔茨海默病的诊断和分类提供了有效的帮助。