Suppr超能文献

SPCF-YOLO:一种用于实时肺结节检测的高效特征优化模型。

SPCF-YOLO: An Efficient Feature Optimization Model for Real-Time Lung Nodule Detection.

作者信息

Ren Yawen, Shi Chenyang, Zhu Donglin, Zhou Changjun

机构信息

School of Computer Science and Technology, Zhejiang Normal University, Jinhua, 321004, China.

出版信息

Interdiscip Sci. 2025 Jun 2. doi: 10.1007/s12539-025-00720-8.

Abstract

Accurate pulmonary nodule detection in CT imaging remains challenging due to fragmented feature integration in conventional deep learning models. This paper proposes SPCF-YOLO, a real-time detection framework that synergizes hierarchical feature fusion with anatomical context modeling. First, the space-to-depth convolution (SPDConv) module preserves fine-grained features in low-resolution images through spatial dimension reorganization. Second, the shared feature pyramid convolution (SFPConv) module is designed to dynamically extract multi-scale contextual information using multi-dilation-rate convolutional layers. Incorporating a small object detection layer aims to improve sensitivity to small nodules. This is achieved in combination with the improved pyramid squeeze attention (PSA) module and the improved contextual transformer (CoTB) module, which enhance global channel dependencies and reduce feature loss. The model achieves 82.8% mean average precision (mAP) and 82.9% F1 score on LUNA16 at 151 frames per second (representing improvements of 17.5% and 82.9% over YOLOv8 respectively), demonstrating real-time clinical viability. Cross-modality validation on SIIM-COVID-19 shows 1.5% improvement, confirming robust generalization.

摘要

由于传统深度学习模型中特征整合碎片化,在CT图像中准确检测肺结节仍然具有挑战性。本文提出了SPCF-YOLO,这是一个实时检测框架,它将分层特征融合与解剖上下文建模相结合。首先,空间到深度卷积(SPDConv)模块通过空间维度重组保留低分辨率图像中的细粒度特征。其次,共享特征金字塔卷积(SFPConv)模块旨在使用多扩张率卷积层动态提取多尺度上下文信息。合并一个小目标检测层旨在提高对小结节的敏感性。这是通过改进的金字塔挤压注意力(PSA)模块和改进的上下文变换器(CoTB)模块实现的,这两个模块增强了全局通道依赖性并减少了特征损失。该模型在LUNA16数据集上以每秒151帧的速度实现了82.8%的平均精度均值(mAP)和82.9%的F1分数(分别比YOLOv8提高了17.5%和82.9%),证明了其在临床中的实时可行性。在SIIM-COVID-19数据集上的跨模态验证显示性能提高了1.5%,证实了其强大的泛化能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验