Suppr超能文献

非侵入式双注意力 TCN 用于下肢运动预测中的肌电图和运动数据融合。

Non-invasive dual attention TCN for electromyography and motion data fusion in lower limb ambulation prediction.

机构信息

Department of Mechanical, Engineering and Automation, Northeastern University, Shenyang, People's Republic of China.

出版信息

J Neural Eng. 2022 Sep 1;19(4). doi: 10.1088/1741-2552/ac89b4.

Abstract

Recent technological advances show the feasibility of fusing surface electromyography (sEMG) signals and movement data to predict lower limb ambulation intentions. However, since the invasive fusion of different signals is a major impediment to improving predictive performance, searching for a non-invasive (NI) fusion mechanism for lower limb ambulation pattern recognition based on different modal features is crucial.. We propose an end-to-end sequence prediction model with NI dual attention temporal convolutional networks (NIDA-TCNs) as a core to elegantly address the essential deficiencies of traditional decision models with heterogeneous signal fusion. Notably, the NIDA-TCN is a weighted fusion of sEMG and inertial measurement units with time-dependent effective hidden information in the temporal and channel dimensions using TCN and self-attentive mechanisms. The new model can better discriminate between walking, jumping, downstairs, and upstairs four lower limb activities of daily living.. The results of this study show that the NIDA-TCN models produce predictions that significantly outperform both frame-wise and TCN models in terms of accuracy, sensitivity, precision, F1 score, and stability. Particularly, the NIDA-TCN with sequence decision fusion (NIDA-TCN-SDF) models, have maximum accuracy and stability increments of 3.37% and 4.95% relative to the frame-wise model, respectively, without manual feature-encoding and complex model parameters.. It is concluded that the results demonstrate the validity and feasibility of the NIDA-TCN-SDF models to ensure the prediction of daily lower limb ambulation activities, paving the way to the development of fused heterogeneous signal decoding with better prediction performance.

摘要

最近的技术进步表明,融合表面肌电图(sEMG)信号和运动数据来预测下肢运动意图是可行的。然而,由于不同信号的侵入性融合是提高预测性能的主要障碍,因此寻找一种基于不同模态特征的非侵入性(NI)融合机制,用于下肢运动模式识别,是至关重要的。我们提出了一种基于 NI 双注意力时间卷积网络(NIDA-TCN)的端到端序列预测模型作为核心,巧妙地解决了传统决策模型在异质信号融合方面的基本缺陷。值得注意的是,NIDA-TCN 是一种使用 TCN 和自注意力机制对 sEMG 和惯性测量单元进行时间相关有效隐藏信息的加权融合,在时间和通道维度上。新模型可以更好地区分行走、跳跃、下楼和上楼四种日常生活中的下肢活动。本研究的结果表明,与逐帧和 TCN 模型相比,NIDA-TCN 模型在准确性、敏感性、精度、F1 得分和稳定性方面产生的预测结果显著更好。特别是,与逐帧模型相比,具有序列决策融合(NIDA-TCN-SDF)的 NIDA-TCN 模型的准确性和稳定性分别有最大的 3.37%和 4.95%的增量,而无需手动特征编码和复杂的模型参数。因此,可以得出结论,结果证明了 NIDA-TCN-SDF 模型预测日常下肢运动活动的有效性和可行性,为开发具有更好预测性能的融合异质信号解码铺平了道路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验