Suppr超能文献

基于表面肌电图和运动数据,利用机器学习准确识别下肢步行模式。

Accurate recognition of lower limb ambulation mode based on surface electromyography and motion data using machine learning.

作者信息

Zhou Bin, Wang Hong, Hu Fo, Feng Naishi, Xi Hailong, Zhang Zhihan, Tang Hao

机构信息

Department of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China.

Department of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China.

出版信息

Comput Methods Programs Biomed. 2020 Sep;193:105486. doi: 10.1016/j.cmpb.2020.105486. Epub 2020 Apr 29.

Abstract

Background and Objective The lower limb activity of recognition of the elderly, the weak, the disabled and the sick is an irreplaceable role in the caring of daily life. The main purpose of this study is to assess the feasibility of using the surface electromyography (sEMG) signal and inertial measurement units (IMUs) data to determine the optimal fusion features and classifier for the study of daily ambulation mode recognition. Methods We have carried out several steps of experiments to obtain and test the optimal combination of the sEMG data and the body motion data at the feature level and the most suitable machine learning classification algorithm. Firstly, the sEMG and IMUs signals of eighteen participants performing four different ambulatory activities have recorded using wearable sensors. Secondly, several features of the sEMG sensors and IMU data were extracted and tested by the Markov Random Field based Fisher-Markov feature selector. Finally, four ML classifiers with several feature combinations were estimated with sensitivity, precision and recognition accurate rate of ambulatory activity classification. Results The results of this work showed that all selected features were significantly statistical difference in four ambulation modes. The principal component analysis was used to reduce the dimension of selected sEMG features and IMU features to form a fusion feature input support vector machine classifier, which could predict ambulatory activities with good classification performance. Conclusions It is concluded that the results demonstrate the feasibility of the ML classification model, which could provide a more novel way to guarantee the recognition rate and effectiveness of monitor daily ambulatory activity.

摘要

背景与目的 老年人、体弱者、残疾人和病人的下肢活动在日常生活照料中起着不可替代的作用。本研究的主要目的是评估使用表面肌电图(sEMG)信号和惯性测量单元(IMU)数据来确定用于日常步行模式识别研究的最佳融合特征和分类器的可行性。方法 我们进行了几个实验步骤,以在特征层面获得并测试sEMG数据与身体运动数据的最佳组合以及最合适的机器学习分类算法。首先,使用可穿戴传感器记录了18名参与者进行四种不同步行活动时的sEMG和IMU信号。其次,通过基于马尔可夫随机场的Fisher - 马尔可夫特征选择器提取并测试了sEMG传感器和IMU数据的几个特征。最后,使用步行活动分类的灵敏度、精度和识别准确率评估了具有几种特征组合的四个机器学习分类器。结果 这项工作的结果表明,在四种步行模式下,所有选定特征均存在显著统计学差异。使用主成分分析对选定的sEMG特征和IMU特征进行降维,以形成融合特征输入支持向量机分类器,该分类器能够以良好的分类性能预测步行活动。结论 得出的结论是,结果证明了机器学习分类模型的可行性,它可以提供一种更新颖的方法来保证监测日常步行活动的识别率和有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验