Department of Chemistry, University of Washington, Seattle, WA, USA.
Department of Chemistry, University of Washington, Seattle, WA, USA; Department of Urology, University of Washington School of Medicine, Seattle, WA, USA.
SLAS Technol. 2022 Dec;27(6):344-349. doi: 10.1016/j.slast.2022.08.001. Epub 2022 Aug 12.
Lumen structures exist throughout the human body, and the vessels of the circulatory system are essential for carrying nutrients and oxygen and regulating inflammation. Vasodilation, the widening of the blood vessel lumen, is important to the immune response as it increases blood flow to a site of inflammation, raises local temperature, and enables optimal immune system function. A common method for studying vasodilation uses excised vessels from animals; major drawbacks include heterogeneity in vessel shape and size, time-consuming procedures, sacrificing animals, and differences between animal and human biology. We have developed a simple, user-friendly in vitro method to form freestanding cell-laden hydrogel rings from collagen and quantitatively measure the effects of vasodilators on ring size. The hydrogel rings are composed of collagen I and can be laden with human vascular smooth muscle cells, a major cellular and structural component of blood vessels, or lined with endothelial cells in the lumen. The methods presented include a 3D printed device (which is amenable to future fabrication by injection molding) and commercially available components (e.g., Teflon tubing or a syringe) to form hydrogel rings between 2.6-4.6 mm outer diameter and 0.79-1.0 mm inner diameter. Here we demonstrate a significant difference in ring area in the presence of a known vasodilator, fasudil (p < 0.0001). Our method is easy to implement and provides a foundation for a medium-throughput solution to generating vessel model structures for future investigations of the fundamental mechanisms of vasodilation (e.g., studying uncharacterized endogenous molecules that may have vasoactivity) and testing vasoactive drugs.
人体中存在着许多腔道结构,而循环系统的血管对于输送营养物质和氧气以及调节炎症至关重要。血管舒张,即血管腔的扩张,对于免疫反应非常重要,因为它增加了流向炎症部位的血流量,提高了局部温度,并使免疫系统能够最佳地发挥功能。研究血管舒张的一种常见方法是使用从动物中提取的血管;主要缺点包括血管形状和大小的异质性、耗时的程序、牺牲动物以及动物和人类生物学之间的差异。我们开发了一种简单易用的体外方法,可从胶原蛋白中形成独立的细胞负载水凝胶环,并定量测量血管扩张剂对环大小的影响。水凝胶环由 I 型胶原蛋白组成,可以负载人血管平滑肌细胞,这是血管的主要细胞和结构成分,或在腔中衬以内皮细胞。所提出的方法包括 3D 打印设备(可通过注塑进行未来制造)和市售组件(例如特氟隆管或注射器),以形成外径为 2.6-4.6 毫米、内径为 0.79-1.0 毫米的水凝胶环。在这里,我们证明了在存在已知血管扩张剂(法舒地尔)的情况下,环面积存在显著差异(p<0.0001)。我们的方法易于实施,为生成血管模型结构提供了基础,可用于进一步研究血管舒张的基本机制(例如,研究可能具有血管活性的未表征的内源性分子)和测试血管活性药物。