Suppr超能文献

选择灵活生存模型指南,为癌症免疫疗法的经济评估提供信息。

A Guide to Selecting Flexible Survival Models to Inform Economic Evaluations of Cancer Immunotherapies.

机构信息

Centre for Health Economics, University of York, York, England, UK.

Biostatistics and Epidemiology office, Gustave Roussy, Paris-Saclay University, Villejuif, France; Oncostat, Paris-Saclay University U1018, Inserm, Paris-Saclay University, "Ligue Contre le Cancer" labeled team, Villejuif, France.

出版信息

Value Health. 2023 Feb;26(2):185-192. doi: 10.1016/j.jval.2022.07.009. Epub 2022 Aug 13.

Abstract

OBJECTIVES

Parametric models are routinely used to estimate the benefit of cancer drugs beyond trial follow-up. The advent of immune checkpoint inhibitors has challenged this paradigm, and emerging evidence suggests that more flexible survival models, which can better capture the shapes of complex hazard functions, might be needed for these interventions. Nevertheless, there is a need for an algorithm to help analysts decide whether flexible models are required and, if so, which should be chosen for testing. This position article has been produced to bridge this gap.

METHODS

A virtual advisory board comprising 7 international experts with in-depth knowledge of survival analysis and health technology assessment was held in summer 2021. The experts discussed 24 questions across 6 topics: the current survival model selection procedure, data maturity, heterogeneity of treatment effect, cure and mortality, external evidence, and additions to existing guidelines. Their responses culminated in an algorithm to inform selection of flexible survival models.

RESULTS

The algorithm consists of 8 steps and 4 questions. Key elements include the systematic identification of relevant external data, using clinical expert input at multiple points in the selection process, considering the future and the observed hazard functions, assessing the potential for long-term survivorship, and presenting results from all plausible models.

CONCLUSIONS

This algorithm provides a systematic, evidence-based approach to justify the selection of survival extrapolation models for cancer immunotherapies. If followed, it should reduce the risk of selecting inappropriate models, partially addressing a key area of uncertainty in the economic evaluation of these agents.

摘要

目的

参数模型常用于估算癌症药物在临床试验随访之外的获益。免疫检查点抑制剂的出现对这一模式提出了挑战,新出现的证据表明,对于这些干预措施,可能需要更灵活的生存模型,这些模型可以更好地捕捉复杂风险函数的形状。然而,需要有一种算法来帮助分析人员确定是否需要灵活的模型,如果需要,应该选择哪种模型进行测试。本立场文件旨在弥补这一空白。

方法

2021 年夏季,一个由 7 名具有深入的生存分析和卫生技术评估知识的国际专家组成的虚拟顾问委员会举行了会议。专家们讨论了 6 个主题下的 24 个问题:当前的生存模型选择程序、数据成熟度、治疗效果异质性、治愈和死亡率、外部证据以及现有指南的补充。他们的回答最终形成了一个算法,用于告知灵活生存模型的选择。

结果

该算法由 8 个步骤和 4 个问题组成。关键要素包括系统地识别相关的外部数据,在选择过程的多个点使用临床专家的意见,考虑未来和观察到的风险函数,评估长期生存的潜力,以及呈现所有合理模型的结果。

结论

该算法为癌症免疫疗法中生存外推模型的选择提供了一种系统的、基于证据的方法。如果遵循该算法,应该可以降低选择不适当模型的风险,部分解决这些药物经济评估中的一个关键不确定性领域。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验