Wieland Vincent, Hasenauer Jan
Life and Medical Science Institute, University of Bonn, Bonn, Germany.
Bonn Center for Mathematical Life Sciences, University of Bonn, Bonn, Germany.
J Math Biol. 2025 May 22;90(6):65. doi: 10.1007/s00285-025-02229-6.
Cancer is a major burden of disease around the globe and one of the leading causes of premature death. The key to improve patient outcomes in modern clinical cancer research is to gain insights into dynamics underlying cancer evolution in order to facilitate the search for effective therapies. However, most cancer data analysis tools are designed for controlled trials and cannot leverage routine clinical data, which are available in far greater quantities. In addition, many cancer models focus on single disease processes in isolation, disregarding interaction. This work proposes a unified stochastic modelling framework for cancer progression that combines (stochastic) processes for tumour growth, metastatic seeding, and patient survival to provide a comprehensive understanding of cancer progression. In addition, our models aim to use non-equidistantly sampled data collected in clinical routine to analyse the whole patient trajectory over the course of the disease. The model formulation features closed-form expressions of the likelihood functions for parameter inference from clinical data. The efficacy of our model approach is demonstrated through a simulation study involving four exemplary models, which utilise both analytic and numerical likelihoods. The results of the simulation studies demonstrate the accuracy and computational efficiency of the analytic likelihood formulations. We found that estimation can retrieve the correct model parameters and reveal the underlying data dynamics, and that this modelling framework is flexible in choosing the precise parameterisation. This work can serve as a foundation for the development of combined stochastic models for guiding personalized therapies in oncology.
癌症是全球主要的疾病负担之一,也是过早死亡的主要原因之一。在现代临床癌症研究中,改善患者治疗效果的关键在于深入了解癌症演变的动态过程,以便促进寻找有效的治疗方法。然而,大多数癌症数据分析工具是为对照试验设计的,无法利用数量远多得多的常规临床数据。此外,许多癌症模型孤立地关注单一疾病过程,忽视了相互作用。这项工作提出了一个统一的癌症进展随机建模框架,该框架结合了肿瘤生长、转移播种和患者生存的(随机)过程,以全面了解癌症进展。此外,我们的模型旨在使用临床常规收集的非等距采样数据,来分析疾病过程中整个患者的轨迹。模型公式具有用于从临床数据进行参数推断的似然函数的闭式表达式。通过涉及四个示例性模型的模拟研究证明了我们模型方法的有效性,这些模型同时利用了解析似然和数值似然。模拟研究结果证明了解析似然公式的准确性和计算效率。我们发现估计可以检索正确的模型参数并揭示潜在的数据动态,并且这个建模框架在选择精确参数化方面具有灵活性。这项工作可以作为开发用于指导肿瘤学个性化治疗的组合随机模型的基础。