文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

研究 N 掺杂对碳量子点结构、光学性质和金属离子筛选的影响。

Investigating the effect of N-doping on carbon quantum dots structure, optical properties and metal ion screening.

机构信息

London Centre for Energy Engineering (LCEE), School of Engineering, London South Bank University, 103 Borough Road, London, SE1 0AA, UK.

National Institute of Materials Physics, Atomistilor 405A, 077125, Magurele, Ilfov, Romania.

出版信息

Sci Rep. 2022 Aug 15;12(1):13806. doi: 10.1038/s41598-022-16893-x.


DOI:10.1038/s41598-022-16893-x
PMID:35970901
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9378613/
Abstract

Carbon quantum dots (CQDs) derived from biomass, a suggested green approach for nanomaterial synthesis, often possess poor optical properties and have low photoluminescence quantum yield (PLQY). This study employed an environmentally friendly, cost-effective, continuous hydrothermal flow synthesis (CHFS) process to synthesise efficient nitrogen-doped carbon quantum dots (N-CQDs) from biomass precursors (glucose in the presence of ammonia). The concentrations of ammonia, as nitrogen dopant precursor, were varied to optimise the optical properties of CQDs. Optimised N-CQDs showed significant enhancement in fluorescence emission properties with a PLQY of 9.6% compared to pure glucose derived-CQDs (g-CQDs) without nitrogen doping which have PLQY of less than 1%. With stability over a pH range of pH 2 to pH 11, the N-CQDs showed excellent sensitivity as a nano-sensor for the highly toxic highly-pollutant chromium (VI), where efficient photoluminescence (PL) quenching was observed. The optimised nitrogen-doping process demonstrated effective and efficient tuning of the overall electronic structure of the N-CQDs resulting in enhanced optical properties and performance as a nano-sensor.

摘要

碳量子点(CQDs)来源于生物质,是一种被提议的绿色纳米材料合成方法,通常具有较差的光学性质和较低的光致发光量子产率(PLQY)。本研究采用环保、经济高效的连续水热流合成(CHFS)工艺,从生物质前体(氨存在下的葡萄糖)合成高效的氮掺杂碳量子点(N-CQDs)。改变氨的浓度(作为氮掺杂剂前体)以优化 CQDs 的光学性质。优化后的 N-CQDs 与未掺杂氮的纯葡萄糖衍生的 CQDs(g-CQDs)相比,荧光发射性能显著增强,PLQY 为 9.6%,而 g-CQDs 没有氮掺杂,PLQY 小于 1%。N-CQDs 在 pH 2 到 pH 11 的范围内具有稳定性,作为一种对高毒性高污染的铬(VI)的纳米传感器具有出色的灵敏度,观察到有效的光致发光(PL)猝灭。优化的氮掺杂过程有效地调节了 N-CQDs 的整体电子结构,从而增强了光学性质,并提高了作为纳米传感器的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02ab/9378613/2fe3ce67c17d/41598_2022_16893_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02ab/9378613/13887ded82cc/41598_2022_16893_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02ab/9378613/cd0e82fe3cc1/41598_2022_16893_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02ab/9378613/33b6672eef11/41598_2022_16893_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02ab/9378613/3ecf4411abe0/41598_2022_16893_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02ab/9378613/71039c32b219/41598_2022_16893_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02ab/9378613/6b6f68467583/41598_2022_16893_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02ab/9378613/60956636c08f/41598_2022_16893_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02ab/9378613/7b492172d9ac/41598_2022_16893_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02ab/9378613/2dbbdcb27f6f/41598_2022_16893_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02ab/9378613/2fe3ce67c17d/41598_2022_16893_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02ab/9378613/13887ded82cc/41598_2022_16893_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02ab/9378613/cd0e82fe3cc1/41598_2022_16893_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02ab/9378613/33b6672eef11/41598_2022_16893_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02ab/9378613/3ecf4411abe0/41598_2022_16893_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02ab/9378613/71039c32b219/41598_2022_16893_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02ab/9378613/6b6f68467583/41598_2022_16893_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02ab/9378613/60956636c08f/41598_2022_16893_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02ab/9378613/7b492172d9ac/41598_2022_16893_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02ab/9378613/2dbbdcb27f6f/41598_2022_16893_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02ab/9378613/2fe3ce67c17d/41598_2022_16893_Fig10_HTML.jpg

相似文献

[1]
Investigating the effect of N-doping on carbon quantum dots structure, optical properties and metal ion screening.

Sci Rep. 2022-8-15

[2]
Nitrogen-doped carbon quantum dots fabricated from cellulolytic enzyme lignin and its application to the determination of cytochrome c and trypsin.

Anal Bioanal Chem. 2021-8

[3]
Highly photoluminescent N, P doped carbon quantum dots as a fluorescent sensor for the detection of dopamine and temperature.

J Photochem Photobiol B. 2019-3-20

[4]
Solvatochromism in highly luminescent environmental friendly carbon quantum dots for sensing applications: Conversion of bio-waste into bio-asset.

Spectrochim Acta A Mol Biomol Spectrosc. 2017-10-21

[5]
Hydrothermal synthesis of N-doped carbon quantum dots and their application in ion-detection and cell-imaging.

Spectrochim Acta A Mol Biomol Spectrosc. 2021-3-5

[6]
Biomass-derived nitrogen-doped carbon quantum dots: highly selective fluorescent probe for detecting Fe ions and tetracyclines.

J Colloid Interface Sci. 2018-12-13

[7]
Synthesis and Application of Carbon Quantum Dots Derived from Carbon Black in Bioimaging.

J Fluoresc. 2024-1

[8]
Quantification of 2-chlorohydroquinone based on interaction between N-doped carbon quantum dots probe and photolysis products in fluorescence system.

Sci Total Environ. 2022-3-25

[9]
Hydrothermal Synthesis of Nitrogen-Doped Carbon Quantum Dots as Fluorescent Probes for the Detection of Dopamine.

J Fluoresc. 2017-11-7

[10]
Synthesis of Carbon Quantum Dots with Special Reference to Biomass as a Source - A Review.

Curr Pharm Des. 2019

引用本文的文献

[1]
Preparation and Characterization of Carbon Quantum Dots (CQD) and CuFeO-CQD Composite Materials for Photo and Electrochemical Applications.

Glob Chall. 2025-6-9

[2]
N‑Doped Carbon Dot-Based Nanoconjugates with Simultaneous Generation of Nitric Oxide and Singlet Oxygen for Phototherapeutic Applications.

ACS Appl Nano Mater. 2025-6-16

[3]
Effect of Hetero-Atom Doping on the Structure and Optical Properties of Carbon Quantum Dots for the Sensitive Detection of Heavy Metal Ions.

Luminescence. 2025-6

[4]
Design of a Facile Fluorescent Nano-Sensor Using Nitrogen and Sulfur Dual Doped Carbon Quantum Dots for Carbendazim Detection: A Turn-Off-On Approach for Food Safety and Environmental Monitoring.

J Fluoresc. 2025-5-27

[5]
Machine Learning-Assisted Carbon Quantum Dot-Enhanced Fluorescent Probe for the Detection of Zn in Sweat.

J Fluoresc. 2025-3-29

[6]
Dual Roles of Carbon Quantum Dots from Green Carbon Sources: A Fluorescence Sensor for Fe Ions, UV and High-Energy Blue Light Screening.

Nanomaterials (Basel). 2025-3-12

[7]
Optimizing Carbon Dot-TiO Nanohybrids for Enhanced Photocatalytic Hydrogen Evolution.

Materials (Basel). 2025-2-26

[8]
Innovative Cerium and Chromium Co-doped Carbon Quantum Dots: Synthesis, Smartphone-Compatible and Sensitive Fluorescence Approach for Detection of Vitamin B.

J Fluoresc. 2025-2-13

[9]
N-Doped carbon quantum dot-based ratiometric fluorescent nanosensor platforms for detection of gastric cancer-associated Helicobacter pylori genes.

Mikrochim Acta. 2025-2-12

[10]
Nitrogen doped carbon dots for intracellular redox modulation optical stimulation.

J Mater Chem B. 2025-2-5

本文引用的文献

[1]
Recent Developments of Carbon Dots in Biosensing: A Review.

ACS Sens. 2020-9-25

[2]
A review: recent advances in preparations and applications of heteroatom-doped carbon quantum dots.

Dalton Trans. 2020-5-13

[3]
Recent development of carbon quantum dots regarding their optical properties, photoluminescence mechanism, and core structure.

Nanoscale. 2019-3-14

[4]
Revisiting Nitrogen Species in Covalent Triazine Frameworks.

Langmuir. 2017-12-8

[5]
Mechanism for excitation-dependent photoluminescence from graphene quantum dots and other graphene oxide derivates: consensus, debates and challenges.

Nanoscale. 2016-4-21

[6]
Full-Color Light-Emitting Carbon Dots with a Surface-State-Controlled Luminescence Mechanism.

ACS Nano. 2015-12-8

[7]
Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures.

Chem Rev. 2015-6-10

[8]
Photoluminescence-tunable carbon nanodots: surface-state energy-gap tuning.

Adv Mater. 2015-1-14

[9]
Carbon nanodots: toward a comprehensive understanding of their photoluminescence.

J Am Chem Soc. 2014-11-25

[10]
Photoluminescence of carbon nanodots: dipole emission centers and electron-phonon coupling.

Nano Lett. 2014-9-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索