Suppr超能文献

开发和验证一种预测模型,以识别分娩活跃期。

Development and validation of a predictive model to identify the active phase of labor.

机构信息

School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy.

Department of Obstetrics and Gynecology, MBBM Foundation at San Gerardo Hospital, Monza, Italy.

出版信息

BMC Pregnancy Childbirth. 2022 Aug 15;22(1):641. doi: 10.1186/s12884-022-04946-y.

Abstract

BACKGROUND

The diagnosis of the active phase of labor is a crucial clinical decision, thus requiring an accurate assessment. This study aimed to build and to validate a predictive model, based on maternal signs and symptoms to identify a cervical dilatation ≥4 cm.

METHODS

A prospective study was conducted from May to September 2018 in a II Level Maternity Unit (development data), and from May to September 2019 in a I Level Maternity Unit (validation data). Women with singleton, term pregnancy, cephalic presentation and presence of contractions were consecutively enrolled during the initial assessment to diagnose the stage of labor. Women < 18 years old, with language barrier or induction of labor were excluded. A nomogram for the calculation of the predictions of cervical dilatation ≥4 cm on the ground of 11 maternal signs and symptoms was obtained from a multivariate logistic model. The predictive performance of the model was investigated by internal and external validation.

RESULTS

A total of 288 assessments were analyzed. All maternal signs and symptoms showed a significant impact on increasing the probability of cervical dilatation ≥4 cm. In the final logistic model, "Rhythm" (OR 6.26), "Duration" (OR 8.15) of contractions and "Show" (OR 4.29) confirmed their significance while, unexpectedly, "Frequency" of contractions had no impact. The area under the ROC curve in the model of the uterine activity was 0.865 (development data) and 0.927 (validation data), with an increment to 0.905 and 0.956, respectively, when adding maternal signs. The Brier Score error in the model of the uterine activity was 0.140 (development data) and 0.097 (validation data), with a decrement to 0.121 and 0.092, respectively, when adding maternal signs.

CONCLUSION

Our predictive model showed a good performance. The introduction of a non-invasive tool might assist midwives in the decision-making process, avoiding interventions and thus offering an evidenced-base care.

摘要

背景

分娩活跃期的诊断是一个关键的临床决策,因此需要进行准确的评估。本研究旨在建立和验证一个预测模型,基于产妇的体征和症状来识别宫颈扩张≥4cm。

方法

这是一项前瞻性研究,于 2018 年 5 月至 9 月在二级产科病房(开发数据)和 2019 年 5 月至 9 月在一级产科病房(验证数据)进行。连续纳入具有单胎、足月妊娠、头位和宫缩的产妇,在初始评估时对产程进行诊断。排除年龄<18 岁、有语言障碍或引产的产妇。通过多变量逻辑模型获得基于 11 个产妇体征和症状计算预测宫颈扩张≥4cm 的列线图。通过内部和外部验证研究模型的预测性能。

结果

共分析了 288 次评估。所有产妇的体征和症状均显著影响宫颈扩张≥4cm 的概率增加。在最终的逻辑模型中,“节律”(OR 6.26)、宫缩的“持续时间”(OR 8.15)和“表现”(OR 4.29)证实了它们的意义,而令人意外的是,宫缩的“频率”没有影响。子宫活动模型的 ROC 曲线下面积在开发数据中为 0.865,在验证数据中为 0.927,当加入产妇体征时,分别增加到 0.905 和 0.956。子宫活动模型的 Brier 评分误差在开发数据中为 0.140,在验证数据中为 0.097,当加入产妇体征时,分别减少到 0.121 和 0.092。

结论

我们的预测模型表现良好。引入一种非侵入性工具可能有助于助产士做出决策,避免干预,从而提供基于证据的护理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3edd/9377074/3385a0d6182a/12884_2022_4946_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验