Suppr超能文献

幅度重排序加速自适应变分量子特征求解器算法。

Amplitude Reordering Accelerates the Adaptive Variational Quantum Eigensolver Algorithms.

作者信息

Lan Zhihao, Liang WanZhen

机构信息

State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian Province, Peoples' Republic of China.

出版信息

J Chem Theory Comput. 2022 Sep 13;18(9):5267-5275. doi: 10.1021/acs.jctc.2c00403. Epub 2022 Aug 15.

Abstract

The variational quantum eigensolver (VQE) algorithm can simulate the chemical systems such as molecules in the noisy-intermediate-scale quantum devices and shows promising applications in quantum chemistry simulations. The accuracy and computational cost of the VQE simulations are determined by the underlying ansatz. Therefore, the most important issue is to generate a compact and accurate ansatz, which requires a shallower parametric quantum circuit and can achieve an acceptable accuracy. The newly developed adaptive algorithms (AAs) such as the adaptive derivative-assembled pseudo-Trotter VQE (ADAPT-VQE) can solve this issue via generating compact and accurate ansatzes. However, these AAs show very low computational efficiency because they require a large number of additional measurements. Here we propose an amplitude reordering (AR) strategy to accelerate the promising but expensive AAs by adding operators in a "batched" fashion in a way that their order is still quasi-optimal. We first introduce the AR method into ADAPT-VQE and build the AR-ADAPT-VQE algorithm. We then endow the energy-sorting VQE (ES-VQE) algorithm with the adaptive feature and introduce the AR into AES-VQE to form the AR-AES-VQE algorithm. To demonstrate the performance of these algorithms, we calculate the dissociation curves of three small molecules, LiH, linear BeH, and linear H, by using (AR-)ADAPT-VQE and (AR-)AES-VQE algorithms. It is found that all of the AR-equipped AAs (AR-AAs) can significantly reduce the number of iterations and subsequently accelerate the calculations with a speedup of up to more than ten times without the obvious loss of accuracy. The final ansatz generated by the AR-AAs not only avoids extra circuit depth but also maintains the computational accuracy; sometimes the AR-AAs even outperforms their original counterparts.

摘要

变分量子本征求解器(VQE)算法能够在噪声中等规模量子设备中模拟诸如分子等化学系统,并且在量子化学模拟中展现出了广阔的应用前景。VQE模拟的精度和计算成本由基础近似波函数决定。因此,最重要的问题是生成一个紧凑且准确的近似波函数,这需要一个较浅的参数化量子电路并且能够达到可接受的精度。新开发的自适应算法(AAs),如自适应导数组装伪 Trotter VQE(ADAPT-VQE),可以通过生成紧凑且准确的近似波函数来解决这个问题。然而,这些自适应算法的计算效率非常低,因为它们需要大量的额外测量。在此,我们提出一种振幅重排(AR)策略,通过以“批处理”方式添加算符,使得它们的顺序仍然接近最优,从而加速有前景但计算成本高的自适应算法。我们首先将AR方法引入ADAPT-VQE并构建AR-ADAPT-VQE算法。然后,我们赋予能量排序VQE(ES-VQE)算法自适应特性,并将AR引入AES-VQE以形成AR-AES-VQE算法。为了证明这些算法的性能,我们使用(AR-)ADAPT-VQE和(AR-)AES-VQE算法计算了三个小分子LiH、线性BeH和线性H₂的解离曲线。结果发现,所有配备AR的自适应算法(AR-AAs)都能显著减少迭代次数,进而加速计算,加速比高达十多倍,且没有明显的精度损失。由AR-AAs生成的最终近似波函数不仅避免了额外的电路深度,还保持了计算精度;有时AR-AAs甚至优于其原始算法。

相似文献

3
Benchmarking Adaptive Variational Quantum Eigensolvers.自适应变分量子特征求解器的基准测试
Front Chem. 2020 Dec 4;8:606863. doi: 10.3389/fchem.2020.606863. eCollection 2020.
5
Efficient Step-Merged Quantum Imaginary Time Evolution Algorithm for Quantum Chemistry.用于量子化学的高效步合并量子虚时演化算法
J Chem Theory Comput. 2020 Oct 13;16(10):6256-6266. doi: 10.1021/acs.jctc.0c00666. Epub 2020 Sep 18.
9
Wave Function Adapted Hamiltonians for Quantum Computing.用于量子计算的波函数适配哈密顿量。
J Chem Theory Comput. 2022 Feb 8;18(2):899-909. doi: 10.1021/acs.jctc.1c01170. Epub 2022 Jan 18.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验