Gomes Niladri, Zhang Feng, Berthusen Noah F, Wang Cai-Zhuang, Ho Kai-Ming, Orth Peter P, Yao Yongxin
Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States.
Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, United States.
J Chem Theory Comput. 2020 Oct 13;16(10):6256-6266. doi: 10.1021/acs.jctc.0c00666. Epub 2020 Sep 18.
We develop a resource-efficient step-merged quantum imaginary time evolution approach (smQITE) to solve for the ground state of a Hamiltonian on quantum computers. This heuristic method features a fixed shallow quantum circuit depth along the state evolution path. We use this algorithm to determine the binding energy curves of a set of molecules, including H, H, H, LiH, HF, HO, and BeH, and find highly accurate results. The required quantum resources of smQITE calculations can be further reduced by adopting the circuit form of the variational quantum eigensolver (VQE) technique, such as the unitary coupled cluster ansatz. We demonstrate that smQITE achieves a similar computational accuracy as VQE at the same fixed-circuit ansatz, without requiring a generally complicated high-dimensional nonconvex optimization. Finally, smQITE calculations are carried out on Rigetti quantum processing units, demonstrating that the approach is readily applicable on current noisy intermediate-scale quantum devices.
我们开发了一种资源高效的步合并量子虚时演化方法(smQITE),用于在量子计算机上求解哈密顿量的基态。这种启发式方法的特点是沿着态演化路径具有固定的浅量子电路深度。我们使用该算法确定了一组分子(包括H₂、H₂⁺、H₃⁺、LiH、HF、H₂O和BeH₂)的结合能曲线,并得到了高度准确的结果。通过采用变分量子本征求解器(VQE)技术的电路形式,如酉耦合簇假设,可以进一步减少smQITE计算所需的量子资源。我们证明,在相同的固定电路假设下,smQITE实现了与VQE相似的计算精度,而无需通常复杂的高维非凸优化。最后,在Rigetti量子处理单元上进行了smQITE计算,证明了该方法很容易应用于当前有噪声的中尺度量子设备。