Suppr超能文献

基于 FeO@PEI 和三角银纳米片的 SERS 平台用于快速检测非耐用药物。

A SERS Platform for Rapid Detection of Drug Resistance of Non- Using FeO@PEI and Triangular Silver Nanoplates.

机构信息

Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, People's Republic of China.

Department of Laboratory Medicine, Xuzhou Central Hospital, Xuzhou, 221000, People's Republic of China.

出版信息

Int J Nanomedicine. 2022 Aug 9;17:3531-3541. doi: 10.2147/IJN.S369591. eCollection 2022.

Abstract

PURPOSE

infection has a high mortality rate, and the increasing prevalence of non- drug resistance in recent years poses a potential threat to human health. Non- has long culture cycles, and its firm cell walls making it difficult to isolate DNA for sequencing.

MATERIALS AND METHODS

FeO@PEI (PEI, polyvinyl imine) was mixed with clinical samples to form FeO@PEI@non- albicans and enriched them with magnets. Triangular silver nanoplates enhanced the surface-enhanced Raman scattering (SERS) signal. SERS was used to detect the fingerprint spectrum of . Then, orthogonal partial least squares discriminant analysis (OPLS-DA) was used to analyze the drug resistance of non- albicans.

RESULTS

SERS combined with OPLS-DA could well analyze the drug resistance of non- albicans. Through 10-fold-cross validation, the accuracy of training and test data is greater than 99%, indicating that the model has good classification ability. We used SERS for the first time to detect the drug resistance of non- albicans directly.

CONCLUSION

This approach can be utilized without causing damage to the cell wall and can be accomplished in as little as 90 minutes. It can provide timely guidance for the treatment of patients with good clinical application potential.

摘要

目的

感染具有很高的死亡率,近年来非耐药性的患病率不断上升,对人类健康构成潜在威胁。非具有较长的培养周期,其坚固的细胞壁使得其 DNA 难以分离用于测序。

材料与方法

FeO@PEI(PEI,聚乙烯亚胺)与临床样本混合,形成 FeO@PEI@非白念珠菌,并通过磁铁进行富集。三角形银纳米板增强了表面增强拉曼散射(SERS)信号。SERS 用于检测 的指纹光谱。然后,使用正交偏最小二乘判别分析(OPLS-DA)分析非白念珠菌的耐药性。

结果

SERS 结合 OPLS-DA 可以很好地分析非白念珠菌的耐药性。通过 10 倍交叉验证,训练和测试数据的准确率大于 99%,表明该模型具有良好的分类能力。我们首次使用 SERS 直接检测非白念珠菌的耐药性。

结论

这种方法不会对细胞壁造成损伤,并且可以在 90 分钟内完成。它可以为患者的治疗提供及时的指导,具有良好的临床应用潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da7e/9375581/e8a979b5b471/IJN-17-3531-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验