Fačevicová Kamila, Filzmoser Peter, Hron Karel
17. listopadu 12, 77146 Olomouc, Czech Republic Department of Mathematical Analysis and Applications of Mathematics, Palacký University Olomouc.
Wiedner Hauptstraße 8-10, 1040 Vienna, Austria Institute of Statistics and Mathematical Methods in Economics, TU Wien.
Stat Pap (Berl). 2023;64(3):955-985. doi: 10.1007/s00362-022-01350-8. Epub 2022 Aug 11.
Compositional data are commonly known as multivariate observations carrying relative information. Even though the case of vector or even two-factorial compositional data (compositional tables) is already well described in the literature, there is still a need for a comprehensive approach to the analysis of multi-factorial relative-valued data. Therefore, this contribution builds around the current knowledge about compositional data a general theoretical framework for -factorial compositional data. As a main finding it turns out that, similar to the case of compositional tables, also the multi-factorial structures can be orthogonally decomposed into an independent and several interactive parts and, moreover, a coordinate representation allowing for their separate analysis by standard analytical methods can be constructed. For the sake of simplicity, these features are explained in detail for the case of three-factorial compositions (compositional cubes), followed by an outline covering the general case. The three-dimensional structure is analyzed in depth in two practical examples, dealing with systems of spatial and time dependent compositional cubes. The methodology is implemented in the R package robCompositions.
成分数据通常被认为是携带相对信息的多变量观测值。尽管向量甚至双因素成分数据(成分表)的情况在文献中已有很好的描述,但对于多因素相对值数据的分析仍需要一种全面的方法。因此,本论文围绕当前关于成分数据的知识构建了一个用于多因素成分数据的通用理论框架。一个主要发现是,与成分表的情况类似,多因素结构也可以正交分解为一个独立部分和几个交互部分,此外,还可以构建一种坐标表示,以便通过标准分析方法对它们进行单独分析。为了简单起见,针对三因素成分(成分立方体)的情况详细解释了这些特征,随后概述了一般情况。在两个实际示例中深入分析了三维结构,这两个示例涉及空间和时间相关的成分立方体系统。该方法在R包robCompositions中实现。