Suppr超能文献

赖氨酸乙酰化组分析揭示了辐射球菌中乙酰化的多种功能。

Lysine Acetylome Profiling Reveals Diverse Functions of Acetylation in Deinococcus radiodurans.

机构信息

School of Life Science, Beijing Institute of Technologygrid.43555.32, Beijing, People's Republic of China.

State Key Laboratory of NBC Protection for Civilian, Beijing, People's Republic of China.

出版信息

Microbiol Spectr. 2022 Oct 26;10(5):e0101621. doi: 10.1128/spectrum.01016-21. Epub 2022 Aug 16.

Abstract

Lysine acetylation is a highly conserved posttranslational modification that plays essential roles in multiple biological functions in a variety of organisms. Deinococcus radiodurans (D. radiodurans) is famous for its extreme resistance to radiation. However, few studies have focused on the lysine acetylation in D. radiodurans. In the present study, antibody enrichment technology and high-resolution liquid chromatography mass spectrometry are used to perform a global analysis of lysine acetylation of D. radiodurans. We create the largest acetylome data set in D. radiodurans to date, totally identifying 4,364 lysine acetylation sites on 1,410 acetylated proteins. Strikingly, of the 3,085 proteins annotated by the uniport database, 45.7% of proteins are acetylated in D. radiodurans. In particular, the glutamate (G) preferentially appears at the -1 and +1 positions of acetylated lysine residues by motif analysis. The acetylated proteins are involved in metabolic pathways, propanoate metabolism, carbon metabolism, fatty acid metabolism, and the tricarboxylic acid cycle. Protein-protein interaction networks demonstrate that four clusters are involved in DNA damage repair, including homologous recombination, mismatch repair, nucleotide excision repair, and base excision repair, which suggests that acetylation plays an indispensable role in the extraordinary capacity to survive high levels of ionizing radiation. Taken together, we report the most comprehensive lysine acetylation in D. radiodurans for the first time, which is of great significance to reveal its robust resistance to radiation. D. radiodurans is distinguished by the most radioresistant organism identified to date. Lysine acetylation is a highly conserved posttranslational modification that plays an essential role in the regulation of many cellular processes and may contribute to its extraordinary radioresistance. We integrate acetyl-lysine enrichment strategy, high-resolution mass spectrometry, and bioinformatics to profile the lysine acetylated proteins for the first time. It is striking that almost half of the total annotated proteins are identified as acetylated forms, which is the largest acetylome data set reported in D. radiodurans to date. The acetylated proteins are involved in metabolic pathways, propanoate metabolism, carbon metabolism, fatty acid metabolism, and the tricarboxylic acid cycle. The results of this study reinforce the notion that acetylation plays critical regulatory roles in diverse aspects of the cellular process, especially in DNA damage repair and metabolism. It provides insight into the roles of lysine acetylation in the robust resistance to radiation.

摘要

赖氨酸乙酰化是一种高度保守的翻译后修饰,在多种生物体的多种生物学功能中发挥着重要作用。耐辐射球菌(D. radiodurans)以其对辐射的极端抗性而闻名。然而,很少有研究关注 D. radiodurans 中的赖氨酸乙酰化。在本研究中,使用抗体富集技术和高分辨率液相色谱-质谱联用技术对 D. radiodurans 的赖氨酸乙酰化进行了全面分析。我们创建了迄今为止 D. radiodurans 中最大的乙酰化组数据集,总共鉴定了 1410 个乙酰化蛋白上的 4364 个赖氨酸乙酰化位点。引人注目的是,在 uniport 数据库注释的 3085 种蛋白质中,45.7%的蛋白质在 D. radiodurans 中被乙酰化。特别是,通过基序分析,谷氨酸(G)优先出现在乙酰化赖氨酸残基的-1 和+1 位置。乙酰化蛋白参与代谢途径、丙酸代谢、碳代谢、脂肪酸代谢和三羧酸循环。蛋白质-蛋白质相互作用网络表明,四个簇参与 DNA 损伤修复,包括同源重组、错配修复、核苷酸切除修复和碱基切除修复,这表明乙酰化在耐高剂量电离辐射的非凡能力中起着不可或缺的作用。总之,我们首次报道了 D. radiodurans 中最全面的赖氨酸乙酰化,这对于揭示其强大的辐射抗性具有重要意义。D. radiodurans 是迄今为止鉴定的最具放射性抗性的生物。赖氨酸乙酰化是一种高度保守的翻译后修饰,在许多细胞过程的调节中起着至关重要的作用,可能有助于其非凡的放射性抗性。我们首次整合了乙酰化赖氨酸富集策略、高分辨率质谱和生物信息学来描绘赖氨酸乙酰化蛋白。引人注目的是,几乎一半的总注释蛋白被鉴定为乙酰化形式,这是迄今为止在 D. radiodurans 中报道的最大乙酰化组数据集。乙酰化蛋白参与代谢途径、丙酸代谢、碳代谢、脂肪酸代谢和三羧酸循环。本研究的结果强化了这样一种观点,即乙酰化在细胞过程的各个方面都起着关键的调节作用,特别是在 DNA 损伤修复和代谢方面。它为赖氨酸乙酰化在抵抗辐射方面的作用提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e73/9603093/010a85487e0e/spectrum.01016-21-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验