Soft Matter and Nanomaterials Laboratory, Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
Langmuir. 2022 Aug 30;38(34):10400-10411. doi: 10.1021/acs.langmuir.2c00987. Epub 2022 Aug 16.
We modulate the adsorption affinities of nanoclay particles for the air-water interface by changing the cationic surface charge composition of the lipid monolayer and thereby tune the attractive electrostatic interaction between the positively charged lipid layer and the zwitterionic nanoclay particles in the water subphase. Our findings emphasize the significance of electrostatic interaction between lipids and the nanoclay, as well as its impact on the structural and viscoelastic features of the composite layer. We use surface pressure (Π)-mean molecular area () isotherms, atomic force microscope (AFM), Brewster angle microscopy (BAM), and energy dispersive X-ray spectrsocopy (EDXS) measurements to analyze the structure phases of lipid and lipid-nanoclay composite interfacial layer. The Π- isotherm curve shows that the lipid-nanoclay composite layer has a larger lift-off area than the neat lipid layer, indicating that nanoparticles adsorb at the lipid layer via electrostatic interaction between lipid and nanoclay molecules. The surface density of the adsorbed nanoclay particles increases with an increase in the composition of the cationic lipid molecules. The stress relaxation response of the composite layer, measured using step compression measurements, exhibits exponential decay and ubiquitous dependence on the cationic dimyristoy-trimethylammonium propane (DMTAP) composition in the lipid layer with crossover to faster relaxation dynamics at DMTAP > 0.75. The power-law study of the frequency-dependent dynamic viscoelastic responses of the interfacial layer, measured using the barrier oscillation method, reveals a transition from glass-like response from neat lipid layer to gel-like dynamic response for the lipid-nanoclay composite layer. A solid-like behavior is evident for all the interface layers with dilation elastic modulus (') > dilational viscous modulus (″); however, the dynamic response of the neat layer is largely frequency-independent, whereas lipid-nanoclay composite layers with DMTAP > 0.75 reveal a frequency-dependent dynamic responses. The frequency-dependent power-law exponent of ', ″ increases on increasing the fractional composition of cationic DMTAP from 0.1 to 1.0, which forms a saturated interface of laponite particles and behaves as a viscoelastic gel in 2D.
我们通过改变脂质单层的阳离子表面电荷组成来调节纳米粘土颗粒对气-水界面的吸附亲和力,从而调节带正电荷的脂质层与带负电荷的纳米粘土颗粒之间的吸引力静电相互作用在水亚相中。我们的研究结果强调了脂质与纳米粘土之间的静电相互作用的重要性及其对复合层结构和粘弹性特征的影响。我们使用表面压力(Π)-平均分子面积()等温线、原子力显微镜(AFM)、掠入射反射显微镜(BAM)和能量色散 X 射线光谱学(EDXS)测量来分析脂质和脂质-纳米粘土复合界面层的结构相。Π-等温线曲线表明,脂质-纳米粘土复合层的升离面积大于纯脂质层,表明纳米颗粒通过脂质和纳米粘土分子之间的静电相互作用吸附在脂质层上。吸附纳米粘土颗粒的表面密度随阳离子脂质分子组成的增加而增加。使用阶跃压缩测量测量的复合层的应力松弛响应表现出指数衰减和普遍依赖于脂质层中阳离子二肉豆蔻酰基-三甲铵丙烷(DMTAP)的组成,在 DMTAP > 0.75 时,向更快的松弛动力学转变。使用势垒振荡法测量界面层的频率相关动态粘弹性响应的幂律研究表明,从纯脂质层的类玻璃响应到脂质-纳米粘土复合层的凝胶状动态响应的转变。所有界面层都表现出固体样行为,扩张弹性模量(')>扩张粘性模量('');然而,纯层的动态响应在很大程度上是频率独立的,而 DMTAP > 0.75 的脂质-纳米粘土复合层则表现出频率依赖的动态响应。随着阳离子 DMTAP 的分数组成从 0.1 增加到 1.0,'、''的频率相关幂律指数增加,形成了纳米粘土颗粒的饱和界面,并在 2D 中表现为粘弹性凝胶。