Kumar Chandan, Bhattacharjee Suman, Srivastava Sunita
Soft Matter and Nanomaterials Laboratory, Department of Physics, Indian Institute of Technology Bombay Mumbai 400 076 India
Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay Mumbai 400 076 India.
Nanoscale Adv. 2024 Jul 24;6(18):4683-4692. doi: 10.1039/d4na00280f. eCollection 2024 Sep 10.
The intersection of nanotechnology and interfacial science has opened up new avenues for understanding complex phenomena occurring at liquid interfaces. The assembly of nanoparticles at liquid/liquid interfaces provides valuable insights into their interactions with fluid interfaces, essential for various applications, including drug delivery. In this study, we focus on the shape and concentration effects of nanoscale particles on interfacial affinity. Using pendant drop tensiometry, we monitor the real-time interfacial tension between an oil droplet and an aqueous solution containing nanoparticles. We measure two different types of nanoparticles: spherical gold nanoparticles (AuNPs) and anisotropic gold nanorods (AuNRs), each functionalized with surfactants to facilitate interaction at the interface. We observe that the interface equilibrium behaviour is mediated by kinetic processes, namely, diffusion, adsorption and rearrangement of particles. For anisotropic AuNRs, we observe shape-induced jamming of particles at the interface, as evidenced by their slower diffusivity and invariant rearrangement rate. In contrast, the adsorption of spherical AuNPs is dynamic and requires more time to reach equilibrium, indicating weaker interface affinity. By detailed analysis of the interfacial tension data and interaction energy calculations, we show that the anisotropic particle shape achieves stable equilibrium inter-particle separation compared to the isotropic particles. Our findings demonstrate that anisotropic particles are a better design choice for drug delivery applications as they provide better affinity for fluid interface attachment, a crucial requirement for efficient drug transport across cell membranes. Additionally, anisotropic shapes can stabilize interfaces at low particle concentrations compared to isotropic particles, thus minimizing side effects associated with biocompatibility and toxicity.
纳米技术与界面科学的交叉为理解发生在液体界面的复杂现象开辟了新途径。纳米粒子在液/液界面的组装为深入了解其与流体界面的相互作用提供了有价值的见解,这对于包括药物递送在内的各种应用至关重要。在本研究中,我们聚焦于纳米级粒子的形状和浓度对界面亲和力的影响。使用悬滴张力测定法,我们监测油滴与含有纳米粒子的水溶液之间的实时界面张力。我们测量了两种不同类型的纳米粒子:球形金纳米粒子(AuNPs)和各向异性的金纳米棒(AuNRs),每种都用表面活性剂进行了功能化处理,以促进在界面处的相互作用。我们观察到界面平衡行为由动力学过程介导,即粒子的扩散、吸附和重排。对于各向异性的AuNRs,我们观察到粒子在界面处因形状导致的堵塞,这表现为它们较慢的扩散率和不变的重排速率。相比之下,球形AuNPs的吸附是动态的,需要更多时间才能达到平衡,这表明其界面亲和力较弱。通过对界面张力数据的详细分析和相互作用能计算,我们表明与各向同性粒子相比,各向异性的粒子形状实现了稳定的粒子间平衡间距。我们的研究结果表明,各向异性粒子是药物递送应用中更好的设计选择,因为它们对流体界面附着具有更好的亲和力,这是有效药物跨细胞膜运输的关键要求。此外,与各向同性粒子相比,各向异性形状在低粒子浓度下可以稳定界面,从而将与生物相容性和毒性相关的副作用降至最低。