Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN 47907, USA.
Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA.
Nat Commun. 2022 Aug 16;13(1):4817. doi: 10.1038/s41467-022-32445-3.
NASA's Gravity Recovery and Interior Laboratory (GRAIL) spacecraft revealed the crust of the Moon is highly porous, with ~4% porosity at 20 km deep. The deep lying porosity discovered by GRAIL has been difficult to explain, with most current models only able to explain high porosity near the lunar surface (first few kilometers) or inside complex craters. Using hydrocode routines we simulated fracturing and generation of porosity by large impacts in lunar, martian, and Earth crust. Our simulations indicate impacts that produce 100-1000 km scale basins alone are capable of producing all observed porosity within the lunar crust. Simulations under the higher surface gravity of Mars and Earth suggest basin forming impacts can be a primary source of porosity and fracturing of ancient planetary crusts. Thus, we show that impacts could have supported widespread crustal fluid circulation, with important implications for subsurface habitable environments on early Earth and Mars.
美国国家航空航天局(NASA)的重力恢复和内部实验室(GRAIL)航天器揭示月球地壳具有高度多孔性,在 20 公里深处的孔隙率约为 4%。GRAIL 发现的深层孔隙率一直难以解释,因为大多数当前模型只能解释月球表面附近(最初的几公里)或复杂陨石坑内部的高孔隙率。我们使用水力压裂程序模拟了月球、火星和地球地壳中大型撞击产生的断裂和孔隙形成。我们的模拟表明,仅产生 100-1000 公里尺度盆地的撞击就能够在月球地壳内产生所有观察到的孔隙率。在火星和地球较高的表面重力下的模拟表明,盆地形成的撞击可能是古老行星地壳孔隙率和断裂的主要来源。因此,我们表明撞击可能支持广泛的地壳流体循环,这对早期地球和火星的地下宜居环境具有重要意义。