Suppr超能文献

莱茵衣藻中环式电子流产生的质子梯度对氢气光产生的控制。

Control of hydrogen photoproduction by the proton gradient generated by cyclic electron flow in Chlamydomonas reinhardtii.

机构信息

Commissariat à l'Energie Atomique et aux Energies Alternatives, Direction des Sciences du Vivant, Institut de Biologie Environementale et de Biotechnologie, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, Commissariat à l'Energie Atomique Cadarache, 13108 Saint-Paul-lez-Durance, France.

出版信息

Plant Cell. 2011 Jul;23(7):2619-30. doi: 10.1105/tpc.111.086876. Epub 2011 Jul 15.

Abstract

Hydrogen photoproduction by eukaryotic microalgae results from a connection between the photosynthetic electron transport chain and a plastidial hydrogenase. Algal H₂ production is a transitory phenomenon under most natural conditions, often viewed as a safety valve protecting the photosynthetic electron transport chain from overreduction. From the colony screening of an insertion mutant library of the unicellular green alga Chlamydomonas reinhardtii based on the analysis of dark-light chlorophyll fluorescence transients, we isolated a mutant impaired in cyclic electron flow around photosystem I (CEF) due to a defect in the Proton Gradient Regulation Like1 (PGRL1) protein. Under aerobiosis, nonphotochemical quenching of fluorescence (NPQ) is strongly decreased in pgrl1. Under anaerobiosis, H₂ photoproduction is strongly enhanced in the pgrl1 mutant, both during short-term and long-term measurements (in conditions of sulfur deprivation). Based on the light dependence of NPQ and hydrogen production, as well as on the enhanced hydrogen production observed in the wild-type strain in the presence of the uncoupling agent carbonyl cyanide p-trifluoromethoxyphenylhydrazone, we conclude that the proton gradient generated by CEF provokes a strong inhibition of electron supply to the hydrogenase in the wild-type strain, which is released in the pgrl1 mutant. Regulation of the trans-thylakoidal proton gradient by monitoring pgrl1 expression opens new perspectives toward reprogramming the cellular metabolism of microalgae for enhanced H₂ production.

摘要

真核微藻的氢气光生产是光合作用电子传递链与质体氢化酶之间联系的结果。在大多数自然条件下,藻类 H₂的产生是一种短暂的现象,通常被视为保护光合作用电子传递链免受过度还原的安全阀。通过对单细胞绿藻莱茵衣藻插入突变文库的基于暗-光叶绿素荧光瞬变分析的集落筛选,我们分离到一个由于质子梯度调节样蛋白 1(PGRL1)蛋白缺陷而导致循环电子流围绕光系统 I(CEF)受损的突变体。在好氧条件下,pgrl1 中非光化学荧光猝灭(NPQ)显著降低。在厌氧条件下,pgrl1 突变体中的 H₂光生产强烈增强,无论是在短期还是长期测量(在硫剥夺条件下)。基于 NPQ 和氢气产生的光依赖性,以及在存在解偶联剂羰基氰化物对三氟甲氧基苯腙的情况下野生型菌株中观察到的增强的氢气产生,我们得出结论,CEF 产生的质子梯度强烈抑制了野生型菌株中氢化酶的电子供应,而在 pgrl1 突变体中则被释放。通过监测 pgrl1 表达来调节跨类囊体质子梯度为增强 H₂生产而重新编程微藻的细胞代谢开辟了新的前景。

相似文献

10
Maximal cyclic electron flow rate is independent of PGRL1 in Chlamydomonas.衣藻中最大循环电子流速率与PGRL1无关。
Biochim Biophys Acta Bioenerg. 2019 May 1;1860(5):425-432. doi: 10.1016/j.bbabio.2019.01.004. Epub 2019 Feb 1.

引用本文的文献

4
Regulation of Microalgal Photosynthetic Electron Transfer.微藻光合电子传递的调控
Plants (Basel). 2024 Jul 29;13(15):2103. doi: 10.3390/plants13152103.
9
Genetic engineering for biohydrogen production from microalgae.用于微藻生物制氢的基因工程。
iScience. 2023 Jul 3;26(8):107255. doi: 10.1016/j.isci.2023.107255. eCollection 2023 Aug 18.

本文引用的文献

1
Hydrogen evolution by several algae.几种藻类的产氢。
Planta. 1970 Sep;91(3):220-6. doi: 10.1007/BF00385481.
3
Auxiliary electron transport pathways in chloroplasts of microalgae.藻类叶绿体中的辅助电子传递途径。
Photosynth Res. 2010 Nov;106(1-2):19-31. doi: 10.1007/s11120-010-9575-3. Epub 2010 Jul 7.
7
FERMENTATIVE AND PHOTOCHEMICAL PRODUCTION OF HYDROGEN IN ALGAE.藻类的发酵和光化学产氢。
J Gen Physiol. 1942 Nov 20;26(2):219-40. doi: 10.1085/jgp.26.2.219.
8
How oxygen attacks [FeFe] hydrogenases from photosynthetic organisms.氧气如何攻击来自光合生物的[铁铁]氢化酶。
Proc Natl Acad Sci U S A. 2009 Oct 13;106(41):17331-6. doi: 10.1073/pnas.0905343106. Epub 2009 Sep 28.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验