Suppr超能文献

莱茵衣藻中环式电子流产生的质子梯度对氢气光产生的控制。

Control of hydrogen photoproduction by the proton gradient generated by cyclic electron flow in Chlamydomonas reinhardtii.

机构信息

Commissariat à l'Energie Atomique et aux Energies Alternatives, Direction des Sciences du Vivant, Institut de Biologie Environementale et de Biotechnologie, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, Commissariat à l'Energie Atomique Cadarache, 13108 Saint-Paul-lez-Durance, France.

出版信息

Plant Cell. 2011 Jul;23(7):2619-30. doi: 10.1105/tpc.111.086876. Epub 2011 Jul 15.

Abstract

Hydrogen photoproduction by eukaryotic microalgae results from a connection between the photosynthetic electron transport chain and a plastidial hydrogenase. Algal H₂ production is a transitory phenomenon under most natural conditions, often viewed as a safety valve protecting the photosynthetic electron transport chain from overreduction. From the colony screening of an insertion mutant library of the unicellular green alga Chlamydomonas reinhardtii based on the analysis of dark-light chlorophyll fluorescence transients, we isolated a mutant impaired in cyclic electron flow around photosystem I (CEF) due to a defect in the Proton Gradient Regulation Like1 (PGRL1) protein. Under aerobiosis, nonphotochemical quenching of fluorescence (NPQ) is strongly decreased in pgrl1. Under anaerobiosis, H₂ photoproduction is strongly enhanced in the pgrl1 mutant, both during short-term and long-term measurements (in conditions of sulfur deprivation). Based on the light dependence of NPQ and hydrogen production, as well as on the enhanced hydrogen production observed in the wild-type strain in the presence of the uncoupling agent carbonyl cyanide p-trifluoromethoxyphenylhydrazone, we conclude that the proton gradient generated by CEF provokes a strong inhibition of electron supply to the hydrogenase in the wild-type strain, which is released in the pgrl1 mutant. Regulation of the trans-thylakoidal proton gradient by monitoring pgrl1 expression opens new perspectives toward reprogramming the cellular metabolism of microalgae for enhanced H₂ production.

摘要

真核微藻的氢气光生产是光合作用电子传递链与质体氢化酶之间联系的结果。在大多数自然条件下,藻类 H₂的产生是一种短暂的现象,通常被视为保护光合作用电子传递链免受过度还原的安全阀。通过对单细胞绿藻莱茵衣藻插入突变文库的基于暗-光叶绿素荧光瞬变分析的集落筛选,我们分离到一个由于质子梯度调节样蛋白 1(PGRL1)蛋白缺陷而导致循环电子流围绕光系统 I(CEF)受损的突变体。在好氧条件下,pgrl1 中非光化学荧光猝灭(NPQ)显著降低。在厌氧条件下,pgrl1 突变体中的 H₂光生产强烈增强,无论是在短期还是长期测量(在硫剥夺条件下)。基于 NPQ 和氢气产生的光依赖性,以及在存在解偶联剂羰基氰化物对三氟甲氧基苯腙的情况下野生型菌株中观察到的增强的氢气产生,我们得出结论,CEF 产生的质子梯度强烈抑制了野生型菌株中氢化酶的电子供应,而在 pgrl1 突变体中则被释放。通过监测 pgrl1 表达来调节跨类囊体质子梯度为增强 H₂生产而重新编程微藻的细胞代谢开辟了新的前景。

相似文献

1
Control of hydrogen photoproduction by the proton gradient generated by cyclic electron flow in Chlamydomonas reinhardtii.
Plant Cell. 2011 Jul;23(7):2619-30. doi: 10.1105/tpc.111.086876. Epub 2011 Jul 15.
4
Role of cyclic electron transport mutations pgrl1 and pgr5 in acclimation process to high light in Chlamydomonas reinhardtii.
Photosynth Res. 2020 Dec;146(1-3):247-258. doi: 10.1007/s11120-020-00751-w. Epub 2020 Apr 29.
6
Water oxidation by photosystem II is the primary source of electrons for sustained H photoproduction in nutrient-replete green algae.
Proc Natl Acad Sci U S A. 2020 Nov 24;117(47):29629-29636. doi: 10.1073/pnas.2009210117. Epub 2020 Nov 9.
9
Alternative photosynthetic electron transport pathways during anaerobiosis in the green alga Chlamydomonas reinhardtii.
Biochim Biophys Acta. 2011 Aug;1807(8):919-26. doi: 10.1016/j.bbabio.2011.02.010. Epub 2011 Mar 1.
10
Maximal cyclic electron flow rate is independent of PGRL1 in Chlamydomonas.
Biochim Biophys Acta Bioenerg. 2019 May 1;1860(5):425-432. doi: 10.1016/j.bbabio.2019.01.004. Epub 2019 Feb 1.

引用本文的文献

3
Light-Driven H Production in : Lessons from Engineering of Photosynthesis.
Plants (Basel). 2024 Jul 30;13(15):2114. doi: 10.3390/plants13152114.
4
Regulation of Microalgal Photosynthetic Electron Transfer.
Plants (Basel). 2024 Jul 29;13(15):2103. doi: 10.3390/plants13152103.
5
Alternative electron pathways of photosynthesis power green algal CO2 capture.
Plant Cell. 2024 Oct 3;36(10):4132-4142. doi: 10.1093/plcell/koae143.
6
Dysfunction of Chloroplast Protease Activity Mitigates Phenotype in the Green Algae .
Plants (Basel). 2024 Feb 23;13(5):606. doi: 10.3390/plants13050606.
7
Metabolomic response to high light from pgrl1 and pgr5 mutants of Chlamydomonas reinhardtii.
Photochem Photobiol Sci. 2023 Nov;22(11):2635-2650. doi: 10.1007/s43630-023-00478-2. Epub 2023 Sep 26.
8
Induction of photosynthesis under anoxic condition in and : interactions between fermentation and photosynthesis.
Front Plant Sci. 2023 Jul 25;14:1186926. doi: 10.3389/fpls.2023.1186926. eCollection 2023.
9
Genetic engineering for biohydrogen production from microalgae.
iScience. 2023 Jul 3;26(8):107255. doi: 10.1016/j.isci.2023.107255. eCollection 2023 Aug 18.
10
A PSII photosynthetic control is activated in anoxic cultures of green algae following illumination.
Commun Biol. 2023 May 12;6(1):514. doi: 10.1038/s42003-023-04890-3.

本文引用的文献

1
Hydrogen evolution by several algae.
Planta. 1970 Sep;91(3):220-6. doi: 10.1007/BF00385481.
3
Auxiliary electron transport pathways in chloroplasts of microalgae.
Photosynth Res. 2010 Nov;106(1-2):19-31. doi: 10.1007/s11120-010-9575-3. Epub 2010 Jul 7.
4
Isolation of the elusive supercomplex that drives cyclic electron flow in photosynthesis.
Nature. 2010 Apr 22;464(7292):1210-3. doi: 10.1038/nature08885. Epub 2010 Apr 4.
5
Characterizing the anaerobic response of Chlamydomonas reinhardtii by quantitative proteomics.
Mol Cell Proteomics. 2010 Jul;9(7):1514-32. doi: 10.1074/mcp.M900421-MCP200. Epub 2010 Feb 26.
6
An ancient light-harvesting protein is critical for the regulation of algal photosynthesis.
Nature. 2009 Nov 26;462(7272):518-21. doi: 10.1038/nature08587.
7
FERMENTATIVE AND PHOTOCHEMICAL PRODUCTION OF HYDROGEN IN ALGAE.
J Gen Physiol. 1942 Nov 20;26(2):219-40. doi: 10.1085/jgp.26.2.219.
8
How oxygen attacks [FeFe] hydrogenases from photosynthetic organisms.
Proc Natl Acad Sci U S A. 2009 Oct 13;106(41):17331-6. doi: 10.1073/pnas.0905343106. Epub 2009 Sep 28.
9
PGRL1 participates in iron-induced remodeling of the photosynthetic apparatus and in energy metabolism in Chlamydomonas reinhardtii.
J Biol Chem. 2009 Nov 20;284(47):32770-81. doi: 10.1074/jbc.M109.050468. Epub 2009 Sep 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验