de Souza Danillo B, Araújo Hugo A, Duarte-Filho Gerson C, Gaffney Eamonn A, Santos Fernando A N, Raposo Ernesto P
Basque Center for Applied Mathematics, Mathematical, Computational and Experimental Neuroscience Research Group, 48009 Bilbao, Bizkaia, Basque-Country, Spain.
Departamento de Matemática, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil.
Phys Rev E. 2022 Jul;106(1-1):014136. doi: 10.1103/PhysRevE.106.014136.
We investigate the stochastic susceptible-infected-recovered (SIR) model of infectious disease dynamics in the Fock-space approach. In contrast to conventional SIR models based on ordinary differential equations for the subpopulation sizes of S, I, and R individuals, the stochastic SIR model is driven by a master equation governing the transition probabilities among the system's states defined by SIR occupation numbers. In the Fock-space approach the master equation is recast in the form of a real-valued Schrödinger-type equation with a second quantization Hamiltonian-like operator describing the infection and recovery processes. We find exact analytic expressions for the Hamiltonian eigenvalues for any population size N. We present small- and large-N results for the average numbers of SIR individuals and basic reproduction number. For small N we also obtain the probability distributions of SIR states, epidemic sizes and durations, which cannot be found from deterministic SIR models. Our Fock-space approach to stochastic SIR models introduces a powerful set of tools to calculate central quantities of epidemic processes, especially for relatively small populations where statistical fluctuations not captured by conventional deterministic SIR models play a crucial role.
我们采用福克空间方法研究传染病动力学的随机易感-感染-康复(SIR)模型。与基于S、I和R个体亚群规模的常微分方程的传统SIR模型不同,随机SIR模型由一个主方程驱动,该主方程控制由SIR占据数定义的系统状态之间的转移概率。在福克空间方法中,主方程被改写为实值薛定谔型方程的形式,带有一个描述感染和康复过程的二次量子化哈密顿量类算子。我们找到了任意种群规模N下哈密顿量本征值的精确解析表达式。我们给出了SIR个体平均数和基本再生数的小N和大N结果。对于小N,我们还得到了SIR状态、流行规模和持续时间的概率分布,这是确定性SIR模型无法得到的。我们用于随机SIR模型的福克空间方法引入了一套强大的工具来计算流行病过程的核心量,特别是对于相对较小的种群,其中传统确定性SIR模型未捕捉到的统计波动起着关键作用。