Suppr超能文献

用于模拟X射线自由电子激光加热的固体密度物质的原子结构中的等离子体环境效应。

Plasma environmental effects in the atomic structure for simulating x-ray free-electron-laser-heated solid-density matter.

作者信息

Jin Rui, Jurek Zoltan, Santra Robin, Son Sang-Kil

机构信息

Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany.

The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany.

出版信息

Phys Rev E. 2022 Jul;106(1-2):015206. doi: 10.1103/PhysRevE.106.015206.

Abstract

High energy density (HED) matter exists extensively in the Universe, and it can be created with extreme conditions in laboratory facilities such as x-ray free-electron lasers (XFEL). In HED matter, the electronic structure of individual atomic ions is influenced by a dense plasma environment, and one of the most significant phenomena is the ionization potential depression (IPD). Incorporation of the IPD effects is of great importance in accurate modeling of dense plasmas. All theoretical treatments of IPD so far have been based on the assumption of local thermodynamic equilibrium, but its validity is questionable in ultrafast formation dynamics of dense plasmas, particularly when interacting with intense XFEL pulses. A treatment of transient IPD, based on an electronic-structure calculation of an atom in the presence of a plasma environment described by classical particles, has recently been proposed [Phys. Rev. E 103, 023203 (2021)2470-004510.1103/PhysRevE.103.023203], but its application to and impact on plasma dynamics simulations have not been investigated yet. In this work, we extend XMDYN, a hybrid quantum-classical approach combining Monte Carlo and molecular dynamics, by incorporating the proposed IPD treatment into plasma dynamics simulations. We demonstrate the importance of the IPD effects in theoretical modeling of aluminum dense plasmas by comparing two XMDYN simulations: one with electronic-structure calculations of isolated atoms (without IPD) and the other with those of atoms embedded in a plasma (with IPD). At equilibrium, the mean charge obtained in the plasma simulation with IPD is in good agreement with the full quantum-mechanical average-atom model. The present approach promises to be a reliable tool to simulate the creation and nonequilibrium evolution of dense plasmas induced by ultraintense and ultrashort XFEL pulses.

摘要

高能量密度(HED)物质在宇宙中广泛存在,并且可以在诸如X射线自由电子激光器(XFEL)等实验室设施的极端条件下产生。在HED物质中,单个原子离子的电子结构受到致密等离子体环境的影响,其中最显著的现象之一是电离势降低(IPD)。纳入IPD效应对于致密等离子体的精确建模非常重要。到目前为止,所有关于IPD的理论处理都基于局部热力学平衡的假设,但其在致密等离子体的超快形成动力学中,尤其是与强XFEL脉冲相互作用时的有效性值得怀疑。最近有人提出了一种基于经典粒子描述的等离子体环境中原子的电子结构计算的瞬态IPD处理方法[《物理评论E》103, 023203 (2021)2470 - 004510.1103/PhysRevE.103.023203],但尚未研究其在等离子体动力学模拟中的应用和影响。在这项工作中,我们通过将所提出的IPD处理纳入等离子体动力学模拟,扩展了XMDYN,一种结合蒙特卡罗和分子动力学的混合量子 - 经典方法。我们通过比较两个XMDYN模拟,证明了IPD效应在铝致密等离子体理论建模中的重要性:一个是对孤立原子进行电子结构计算(无IPD),另一个是对嵌入等离子体中的原子进行电子结构计算(有IPD)。在平衡状态下,有IPD的等离子体模拟中获得的平均电荷与全量子力学平均原子模型吻合良好。本方法有望成为模拟由超强和超短XFEL脉冲诱导的致密等离子体的产生和非平衡演化的可靠工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验