Saghatchi Roozbeh, Yildiz Mehmet, Doostmohammadi Amin
Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla 34956 Istanbul, Turkey; Integrated Manufacturing Technology Research & Application Center, Sabanci University, Tuzla 34956 Istanbul, Turkey; and Composite Technologies Center of Excellence, Sabanci University-Kordsa, Pendik 34906 Istanbul, Turkey.
Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark.
Phys Rev E. 2022 Jul;106(1-1):014705. doi: 10.1103/PhysRevE.106.014705.
Living materials at different length scales manifest active nematic features such as orientational order, nematic topological defects, and active nematic turbulence. Using numerical simulations we investigate the impact of fluid inertia on the collective pattern formation in active nematics. We show that an incremental increase in inertial effects due to reduced viscosity results in gradual melting of nematic order with an increase in topological defect density before a discontinuous transition to a vortex-condensate state. The emergent vortex-condensate state at low enough viscosities coincides with nematic order condensation within the giant vortices and the drop in the density of topological defects. We further show flow field around topological defects is substantially affected by inertial effects. Moreover, we demonstrate the strong dependence of the kinetic energy spectrum on the inertial effects, recover the Kolmogorov scaling within the vortex-condensate phase, but find no evidence of universal scaling at higher viscosities. The findings reveal complexities in active nematic turbulence and emphasize the important cross-talk between active and inertial effects in setting flow and orientational organization of active particles.
不同长度尺度的活性材料呈现出向列相活性特征,如取向有序、向列相拓扑缺陷和向列相活性湍流。通过数值模拟,我们研究了流体惯性对活性向列相中集体图案形成的影响。我们表明,由于粘度降低导致的惯性效应的逐渐增加,会使向列相有序逐渐融化,拓扑缺陷密度增加,然后才会发生向涡旋凝聚态的不连续转变。在足够低的粘度下出现的涡旋凝聚态与巨涡旋内的向列相有序凝聚以及拓扑缺陷密度的下降相吻合。我们进一步表明,拓扑缺陷周围的流场受到惯性效应的显著影响。此外,我们证明了动能谱对惯性效应的强烈依赖性,在涡旋凝聚相内恢复了科尔莫戈罗夫标度,但在较高粘度下没有发现普遍标度的证据。这些发现揭示了活性向列相湍流的复杂性,并强调了活性和惯性效应在设定活性粒子的流动和取向组织方面的重要相互作用。