Instituut-Lorentz for Theoretical Physics, Leiden University, 2333 CA Leiden, The Netherlands.
Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana, Slovenia.
Proc Natl Acad Sci U S A. 2017 Jul 18;114(29):E5771-E5777. doi: 10.1073/pnas.1702777114. Epub 2017 Jul 3.
Topological defects are singularities in material fields that play a vital role across a range of systems: from cosmic microwave background polarization to superconductors and biological materials. Although topological defects and their mutual interactions have been extensively studied, little is known about the interplay between defects in different fields-especially when they coevolve-within the same physical system. Here, using nematic microfluidics, we study the cross-talk of topological defects in two different material fields-the velocity field and the molecular orientational field. Specifically, we generate hydrodynamic stagnation points of different topological charges at the center of star-shaped microfluidic junctions, which then interact with emergent topological defects in the orientational field of the nematic director. We combine experiments and analytical and numerical calculations to show that a hydrodynamic singularity of a given topological charge can nucleate a nematic defect of equal topological charge and corroborate this by creating [Formula: see text], [Formula: see text], and [Formula: see text] topological defects in four-, six-, and eight-arm junctions. Our work is an attempt toward understanding materials that are governed by distinctly multifield topology, where disparate topology-carrying fields are coupled and concertedly determine the material properties and response.
拓扑缺陷是物质场中的奇点,在从宇宙微波背景极化到超导体和生物材料等一系列系统中都起着至关重要的作用。尽管拓扑缺陷及其相互作用已经得到了广泛的研究,但对于不同领域中的缺陷(尤其是当它们在同一物理系统中共同演变时)之间的相互作用,我们知之甚少。在这里,我们使用向列相微流控技术研究了两个不同材料场中的拓扑缺陷之间的交叉对话——速度场和分子取向场。具体来说,我们在星形微流路的中心产生了具有不同拓扑电荷的流体动力学静止点,然后这些静止点与向列型指向矢的取向场中出现的拓扑缺陷相互作用。我们通过实验、分析和数值计算相结合的方法表明,具有给定拓扑电荷的流体动力学奇点可以引发具有相同拓扑电荷的向列型缺陷,并通过在四臂、六臂和八臂结中分别生成[Formula: see text]、[Formula: see text]和[Formula: see text]拓扑缺陷来证实这一点。我们的工作是朝着理解由明显多场拓扑控制的材料迈出的一步,在这些材料中,不同的拓扑承载场相互耦合,并协同决定材料的性质和响应。