Leng Kuangdai, King Stephen, Snow Tim, Rogers Sarah, Markvardsen Anders, Maheswaran Satheesh, Thiyagalingam Jeyan
Scientific Computing Department, STFC, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom.
ISIS Neutron and Muon Source, STFC, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom.
J Appl Crystallogr. 2022 Aug 1;55(Pt 4):966-977. doi: 10.1107/S1600576722006379.
A general method to invert parameter distributions of a polydisperse system using data acquired from a small-angle scattering (SAS) experiment is presented. The forward problem, calculating the scattering intensity given the distributions of any causal parameters of a theoretical model, is generalized as a multi-linear map, characterized by a high-dimensional Green tensor that represents the complete scattering physics. The inverse problem, finding the maximum-likelihood estimation of the parameter distributions (in free form) given the scattering intensity (either a curve or an image) acquired from an experiment, is formulated as a constrained nonlinear programming (NLP) problem. This NLP problem is solved with high accuracy and efficiency via several theoretical and computational enhancements, such as an automatic data scaling for accuracy preservation and GPU acceleration for large-scale multi-parameter systems. Six numerical examples are presented, including both synthetic tests and solutions to real neutron and X-ray data sets, where the method is compared with several existing methods in terms of their generality, accuracy and computational cost. These examples show that SAS inversion is subject to a high degree of non-uniqueness of solution or structural ambiguity. With an ultra-high accuracy, the method can yield a series of near-optimal solutions that fit data to different acceptable levels.
本文提出了一种利用小角散射(SAS)实验获取的数据来反演多分散体系参数分布的通用方法。正向问题,即给定理论模型的任何因果参数分布来计算散射强度,被推广为一个多线性映射,其特征是由一个表示完整散射物理的高维格林张量来描述。反向问题,即在给定从实验中获取的散射强度(曲线或图像)的情况下,求参数分布(自由形式)的最大似然估计,被表述为一个约束非线性规划(NLP)问题。通过一些理论和计算上的改进,如用于精度保持的自动数据缩放和用于大规模多参数系统的GPU加速,该NLP问题得以高精度和高效率地求解。给出了六个数值例子,包括合成测试以及对真实中子和X射线数据集的求解,在通用性、精度和计算成本方面将该方法与几种现有方法进行了比较。这些例子表明,SAS反演存在高度的解的非唯一性或结构模糊性。该方法能够以超高精度得到一系列能将数据拟合到不同可接受水平的近最优解。