Zhang Chenhui, Liu Chen, Zhang Senfu, Zhou Bojian, Guan Chaoshuai, Ma Yinchang, Algaidi Hanin, Zheng Dongxing, Li Yan, He Xin, Zhang Junwei, Li Peng, Hou Zhipeng, Yin Gen, Liu Kai, Peng Yong, Zhang Xi-Xiang
Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China.
Adv Mater. 2022 Oct;34(42):e2204163. doi: 10.1002/adma.202204163. Epub 2022 Sep 16.
Skyrmion helicity, which defines the spin swirling direction, is a fundamental parameter that may be utilized to encode data bits in future memory devices. Generally, in centrosymmetric ferromagnets, dipole skyrmions with helicity of -π/2 and π/2 are degenerate in energy, leading to equal populations of both helicities. On the other hand, in chiral materials where the Dzyaloshinskii-Moriya interaction (DMI) prevails and the dipolar interaction is negligible, only a preferred helicity is selected by the type of DMI. However, whether there is a rigid boundary between these two regimes remains an open question. Herein, the observation of dipole skyrmions with unconventional helicity polarization in a van der Waals ferromagnet, Fe GeTe , is reported. Combining magnetometry, Lorentz transmission electron microscopy, electrical transport measurements, and micromagnetic simulations, the short-range superstructures in Fe GeTe resulting in a localized DMI contribution, which breaks the degeneracy of the opposite helicities and leads to the helicity polarization, is demonstrated. Therefore, the helicity feature in Fe GeTe is controlled by both the dipolar interaction and DMI that the former leads to Bloch-type skyrmions with helicity of ±π/2 whereas the latter breaks the helicity degeneracy. This work provides new insights into the skyrmion topology in van der Waals materials.
斯格明子螺旋度定义了自旋的旋转方向,是一个基本参数,可用于在未来的存储设备中编码数据位。一般来说,在中心对称铁磁体中,螺旋度为-π/2和π/2的偶极斯格明子能量简并,导致两种螺旋度的数量相等。另一方面,在以Dzyaloshinskii-Moriya相互作用(DMI)为主且偶极相互作用可忽略不计的手性材料中,只有一种优选的螺旋度由DMI的类型决定。然而,这两种状态之间是否存在严格的界限仍是一个悬而未决的问题。在此,报道了在范德华铁磁体Fe₃GeTe₂中观察到具有非常规螺旋度极化的偶极斯格明子。结合磁力测量、洛伦兹透射电子显微镜、电输运测量和微磁模拟,证明了Fe₃GeTe₂中的短程超结构导致局部DMI贡献,这打破了相反螺旋度的简并并导致螺旋度极化。因此,Fe₃GeTe₂中的螺旋度特征由偶极相互作用和DMI共同控制,前者导致螺旋度为±π/2的布洛赫型斯格明子,而后者打破了螺旋度简并。这项工作为范德华材料中的斯格明子拓扑提供了新的见解。