Suppr超能文献

基于正则化约束编程从动态表达数据评估基因调控网络活性。

Evaluating Gene Regulatory Network Activity From Dynamic Expression Data by Regularized Constraint Programming.

出版信息

IEEE J Biomed Health Inform. 2022 Nov;26(11):5738-5749. doi: 10.1109/JBHI.2022.3199243. Epub 2022 Nov 10.

Abstract

By extracting molecular interactions identified by experiments, gene regulatory networks or gene circuits have documented in a large number of knowledge-based repositories. They provide systematic information and guidance of the functional connections between regulators, e.g., transcription factor proteins and miRNAs, and target genes. Network activity is defined as the degree of consistency between a regulatory network architecture and a specific cellular context of gene expression and can also be measured as a score of statistical significance. The gene network activities are closely related to the dynamics of cell states. To evaluate the activity of regulatory events in the form of network, we propose a network activity evaluation (NAE) framework by measuring the consistency between network architecture and gene expression data across specific states based on mathematical programming. NAE firstly employs the dynamic Bayesian network model to formulate the network structure with time series profiling data. For the constraints of prior knowledge about gene regulatory network, NAE introduces an interpretable general loss function with regularization penalties to calculate the degree of consistency between gene network and gene expression data. Moreover, we design a fast and convergent alternating direction method of multipliers algorithm to optimize the regularized constraint programming. The efficiency and advantage of the NAE framework is deduced through numerous experiments and comparison studies. It reflects the possibility and potential of the match between network and data, thereby helping to reveal the network activity and to explain the dynamic responds underlying the network structure caused by changes in molecular environment of living cells. The code of NAE is freely available for academic use (https://github.com/zpliulab/NAE).

摘要

通过提取实验鉴定的分子相互作用、基因调控网络或基因电路,已经在大量基于知识的存储库中记录下来。它们提供了调控因子(如转录因子蛋白和 miRNA)与靶基因之间功能连接的系统信息和指导。网络活性被定义为调控网络结构与特定细胞表达基因的上下文之间的一致性程度,也可以作为统计显著性得分来衡量。基因网络活性与细胞状态的动态密切相关。为了以网络的形式评估调控事件的活性,我们提出了一种网络活性评估(NAE)框架,该框架通过基于数学规划来衡量特定状态下网络结构和基因表达数据之间的一致性。NAE 首先采用动态贝叶斯网络模型来构建具有时间序列分析数据的网络结构。为了满足基因调控网络的先验知识的约束条件,NAE 引入了一个具有正则化惩罚的可解释通用损失函数来计算基因网络与基因表达数据之间的一致性程度。此外,我们设计了一种快速和收敛的交替方向乘子算法来优化正则化约束编程。通过大量实验和比较研究,推导出了 NAE 框架的效率和优势。它反映了网络和数据之间匹配的可能性和潜力,从而有助于揭示网络活性,并解释由于活细胞中分子环境的变化而导致的网络结构的动态响应。NAE 的代码可免费用于学术用途(https://github.com/zpliulab/NAE)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验