Suppr超能文献

利用贝叶斯网络中隐含的潜在结构表示核心基因表达活动关系。

Representing core gene expression activity relationships using the latent structure implicit in Bayesian networks.

机构信息

Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, United States.

Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, United States.

出版信息

Bioinformatics. 2024 Aug 2;40(8). doi: 10.1093/bioinformatics/btae463.

Abstract

MOTIVATION

Many types of networks, such as co-expression or ChIP-seq-based gene-regulatory networks, provide useful information for biomedical studies. However, they are often too full of connections and difficult to interpret, forming "indecipherable hairballs."

RESULTS

To address this issue, we propose that a Bayesian network can summarize the core relationships between gene expression activities. This network, which we call the LatentDAG, is substantially simpler than conventional co-expression network and ChIP-seq networks (by two orders of magnitude). It provides clearer clusters, without extraneous cross-cluster connections, and clear separators between modules. Moreover, one can find a number of clear examples showing how it bridges the connection between steps in the transcriptional regulatory network and other networks (e.g. RNA-binding protein). In conjunction with a graph neural network, the LatentDAG works better than other biological networks in a variety of tasks, including prediction of gene conservation and clustering genes.

AVAILABILITY AND IMPLEMENTATION

Code is available at https://github.com/gersteinlab/LatentDAG.

摘要

动机

许多类型的网络,如共表达或基于 ChIP-seq 的基因调控网络,为生物医学研究提供了有用的信息。然而,它们通常充满了太多的连接,难以解释,形成了“难以理解的毛发球”。

结果

为了解决这个问题,我们提出贝叶斯网络可以总结基因表达活动之间的核心关系。这个网络,我们称之为 LatentDAG,比传统的共表达网络和 ChIP-seq 网络(相差两个数量级)要简单得多。它提供了更清晰的聚类,没有多余的跨聚类连接,模块之间有明显的分隔。此外,还可以找到一些清晰的例子,展示了它如何在转录调控网络和其他网络(如 RNA 结合蛋白)之间架起桥梁。与图神经网络结合使用时,LatentDAG 在多种任务中的表现优于其他生物网络,包括基因保守性预测和基因聚类。

可用性和实现

代码可在 https://github.com/gersteinlab/LatentDAG 上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3918/11316617/3d134ee21a0a/btae463f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验