Banerjee Samragni, Sokolov Alexander Yu
Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States.
J Chem Theory Comput. 2022 Sep 13;18(9):5337-5348. doi: 10.1021/acs.jctc.2c00565. Epub 2022 Aug 17.
We present the first implementation and applications of non-Dyson algebraic diagrammatic construction theory for charged excitations in three-dimensional periodic solids (EA/IP-ADC). The EA/IP-ADC approach has a computational cost similar to the ground-state Møller-Plesset perturbation theory, enabling efficient calculations of a variety of crystalline excited-state properties (e.g., band structure, band gap, density of states) sampled in the Brillouin zone. We use EA/IP-ADC to compute the quasiparticle band structures and band gaps of several materials (from large-gap atomic and ionic solids to small-gap semiconductors) and analyze the errors of EA/IP-ADC approximations up to the third order in perturbation theory. Our work also reports the first-ever calculations of ground-state properties (equation-of-state and lattice constants) of three-dimensional crystalline systems using a periodic implementation of third-order Møller-Plesset perturbation theory (MP3).
我们展示了用于三维周期性固体中带电激发的非戴森代数图形构造理论(EA/IP - ADC)的首次实现及应用。EA/IP - ADC方法的计算成本与基态莫勒 - 普列斯特定理扰动理论相近,从而能够高效计算在布里渊区采样的各种晶体激发态性质(例如能带结构、带隙、态密度)。我们使用EA/IP - ADC来计算几种材料(从大带隙原子和离子固体到小带隙半导体)的准粒子能带结构和带隙,并分析在扰动理论中直至三阶的EA/IP - ADC近似的误差。我们的工作还报告了使用三阶莫勒 - 普列斯特定理扰动理论(MP3)的周期性实现对三维晶体系统基态性质(状态方程和晶格常数)的首次计算。