广泛性焦虑障碍的数字化表型:使用人工智能通过日常生活中的可穿戴传感器准确预测症状严重程度。

Digital phenotyping of generalized anxiety disorder: using artificial intelligence to accurately predict symptom severity using wearable sensors in daily life.

机构信息

Center for Technology and Behavioral Health, Geisel School of Medicine, Dartmouth College, Lebanon, PA, USA.

Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Lebanon, PA, USA.

出版信息

Transl Psychiatry. 2022 Aug 17;12(1):336. doi: 10.1038/s41398-022-02038-1.

Abstract

BACKGROUND

Generalized anxiety disorder (GAD) is a highly prevalent condition. Monitoring GAD symptoms requires substantial time, effort, and cost. The development of digital phenotypes of GAD may enable new scalable, timely, and inexpensive assessments of GAD symptoms.

METHOD

The current study used passive movement data collected within a large national cohort (N = 264) to assess GAD symptom severity.

RESULTS

Using one week of movement data, machine learning models accurately predicted GAD symptoms across a continuum (r = 0.511) and accurately detected those individuals with elevated GAD symptoms (AUC = 0.892, 70.0% Sensitivity, 95.5% Specificity, Brier Score = 0.092). Those with a risk score at the 90 percentile or above had 21 times the odds of having elevated GAD symptoms compared to those with lower risk scores. The risk score was most strongly associated with irritability, worry controllability, and restlessness (individual rs > 0.5). The risk scores for GAD were also discriminant of major depressive disorder symptom severity (r = 0.190).

LIMITATIONS

The current study examined the detection of GAD symptom severity rather than the prediction of GAD symptom severity across time. Furthermore, the instant sample of data did not include nighttime actigraphy, as participants were not asked to wear the actigraphs at night.

CONCLUSIONS

These results suggest that artificial intelligence can effectively utilize wearable movement data collected in daily life to accurately infer risk of GAD symptoms.

摘要

背景

广泛性焦虑障碍(GAD)是一种高发疾病。监测 GAD 症状需要大量的时间、精力和成本。开发 GAD 的数字表型可能会为 GAD 症状提供新的可扩展、及时且经济实惠的评估方法。

方法

本研究使用从大型全国队列(N=264)中收集的被动运动数据来评估 GAD 症状严重程度。

结果

使用一周的运动数据,机器学习模型可以准确预测 GAD 症状的连续变化(r=0.511),并准确检测出那些 GAD 症状升高的个体(AUC=0.892,70.0%灵敏度,95.5%特异性,Brier 评分=0.092)。那些风险评分在第 90 百分位或以上的个体,与那些风险评分较低的个体相比,出现 GAD 症状升高的可能性高出 21 倍。风险评分与烦躁、担忧可控制性和不安(个体 rs>0.5)的相关性最强。GAD 的风险评分也可区分重度抑郁症症状的严重程度(r=0.190)。

局限性

本研究检测了 GAD 症状严重程度的检测,而不是 GAD 症状严重程度随时间的预测。此外,即时数据样本不包括夜间活动记录,因为没有要求参与者在夜间佩戴活动记录仪。

结论

这些结果表明,人工智能可以有效地利用日常生活中收集的可穿戴运动数据来准确推断 GAD 症状的风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3241/9385727/b2a1b35da8f8/41398_2022_2038_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索