Shin Yu-Bin, Kim Ah Young, Kim Seonmin, Shin Min-Sup, Choi Jinhwa, Lee Kyung Lyun, Lee Jisu, Byun Sangwon, Kim Sujin, Lee Heon-Jeong, Cho Chul-Hyun
Department of Psychiatry, Korea University College of Medicine, Seoul, Korea.
Medical Information Research Section, Electronics and Telecommunications Research Institute (ETRI), Daejeon, Korea.
BMJ Open. 2025 Jun 20;15(6):e096773. doi: 10.1136/bmjopen-2024-096773.
Depression and anxiety are highly prevalent mental health conditions that significantly affect quality of life and cause societal burdens. However, their detection and diagnosis rates remain low owing to the limitations of the current screening methods. With rapid technological advancements and the proliferation of consumer-grade wearable devices and smartphones, their integration into digital phenotyping research has enabled the unobtrusive screening for depression and anxiety in natural settings. The Smartphone and Wearable Assessment for Real-Time Screening of Depression and Anxiety study aims to develop prediction algorithms to identify individuals at risk for depressive and anxiety disorders, as well as those with mild-to-severe levels of either condition or both. By collecting comprehensive data using smartphones and smartwatches, this study aims to facilitate the translation of artificial intelligence-based early detection research into clinical impact, thereby potentially enhancing patient care through more accurate and timely interventions.
This cross-sectional observational study will enrol up to 2500 participants (at least 1000) aged 19-59 years from South Korea via social media outreach and clinical referrals. The eligible participants must use a compatible smartphone. Each participant will be followed up for 4 weeks. Data will be collected using a custom-developed smartphone application called PixelMood. Active data collection will include daily, weekly and monthly self-report questionnaires incorporating validated scales, such as the Patient Health Questionnaire-9 and Generalized Anxiety Disorder-7. Passive data from smartphones include information on physical activity, location, ambient light and smartphone usage patterns. Optionally, participants using the Apple Watch or Galaxy Watch devices can provide additional data on physiological responses and sleep health. The primary outcome will be the development of machine-learning algorithms to predict depression and anxiety based on these digital biomarkers. We will employ various machine-learning techniques, including random forest, support vector machine and deep-learning models. The secondary outcomes will include the association between digital biomarkers and clinical measures, and the feasibility and acceptability of data collection methods. Various features characterising mobile usage behaviours, physical/social activity, sleep patterns, resting physiological states and circadian rhythms will be exploited to serve as potential digital phenotyping markers. Advanced machine-learning and deep-learning techniques will be applied to multimodal data for model generation.
This study protocol was reviewed and approved by the Institutional Review Board of the Korea University Anam Hospital (approval number: 2023AN0506). The results of this study will be disseminated via multiple channels. The findings will be presented at local, national and international conferences in relevant fields, such as psychiatry, psychology and digital health. Manuscripts detailing the study results will be submitted to peer-reviewed journals for publication.
The present study was registered with the Clinical Research Information Service (CRIS, https://cris.nih.go.kr; identifier: KCT0009183).
抑郁症和焦虑症是高度流行的心理健康状况,严重影响生活质量并造成社会负担。然而,由于当前筛查方法的局限性,它们的检测和诊断率仍然很低。随着技术的快速进步以及消费级可穿戴设备和智能手机的普及,将它们整合到数字表型研究中能够在自然环境中对抑郁症和焦虑症进行无创筛查。“用于抑郁症和焦虑症实时筛查的智能手机与可穿戴设备评估”研究旨在开发预测算法,以识别有抑郁和焦虑症风险的个体,以及患有轻度至重度单一病症或两种病症的个体。通过使用智能手机和智能手表收集全面的数据,本研究旨在促进基于人工智能的早期检测研究转化为临床影响,从而有可能通过更准确、及时的干预措施改善患者护理。
这项横断面观察性研究将通过社交媒体宣传和临床转诊,从韩国招募多达2500名(至少1000名)年龄在19至59岁之间的参与者。符合条件的参与者必须使用兼容的智能手机。每位参与者将接受为期4周的随访。数据将使用一款名为PixelMood的定制智能手机应用程序收集。主动数据收集将包括每日、每周和每月的自我报告问卷,其中纳入了经过验证的量表,如患者健康问卷-9和广泛性焦虑障碍-7。来自智能手机的被动数据包括身体活动、位置、环境光和智能手机使用模式等信息。可选地,使用苹果手表或三星手表设备的参与者可以提供有关生理反应和睡眠健康的额外数据。主要结果将是开发基于这些数字生物标志物预测抑郁症和焦虑症的机器学习算法。我们将采用各种机器学习技术,包括随机森林、支持向量机和深度学习模型。次要结果将包括数字生物标志物与临床指标之间的关联,以及数据收集方法的可行性和可接受性。将利用表征移动使用行为、身体/社交活动、睡眠模式、静息生理状态和昼夜节律的各种特征作为潜在的数字表型标记。先进的机器学习和深度学习技术将应用于多模态数据以生成模型。
本研究方案已由韩国大学安岩医院机构审查委员会审查并批准(批准号:2023AN0506)。本研究结果将通过多种渠道传播。研究结果将在精神病学、心理学和数字健康等相关领域的地方、国家和国际会议上展示。详细阐述研究结果的手稿将提交给同行评审期刊发表。
本研究已在临床研究信息服务中心(CRIS,https://cris.nih.go.kr;标识符:KCT0009183)注册。