Suppr超能文献

通过密集纵向数据理解耳鸣症状动态变化及临床改善情况。

Understanding tinnitus symptom dynamics and clinical improvement through intensive longitudinal data.

作者信息

Engelke Milena, Simões Jorge Piano, Basso Laura, Wunder Nina, Langguth Berthold, Probst Thomas, Pryss Rüdiger, Schlee Winfried

机构信息

Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany.

Department of Psychology, Health and Technology, University of Twente, Enschede, The Netherlands.

出版信息

NPJ Digit Med. 2025 Jan 14;8(1):27. doi: 10.1038/s41746-024-01425-w.

Abstract

Intensive longitudinal sampling enhances subjective data collection by capturing real-time, dynamic inputs in natural settings, complementing traditional methods. This study evaluates the feasibility of using daily self-reported app data to assess clinical improvement among tinnitus patients undergoing treatment. App data from a multi-center randomized clinical trial were analysed using time-series feature extraction and nested cross-validated ordinal regression with elastic net regulation to predict clinical improvement based on the Clinical Global Impression-Improvement scale (CGI-I). With 50% app compliance (N = 129, 8480 entries), the model demonstrated good fit to the test data (McFadden R2 = 0.82) suggesting its generalizability. Clinical improvement was associated with linear declines in tinnitus-related thoughts, jaw tension, tinnitus loudness, increases in happiness, and variability changes in tinnitus loudness and distress. These findings suggest that daily self-reported data on tinnitus symptoms is sensitive to treatment response and provides insights into specific symptom changes that occur during treatment.

摘要

密集纵向抽样通过在自然环境中捕获实时、动态的输入来增强主观数据收集,对传统方法起到补充作用。本研究评估了使用每日自我报告的应用程序数据来评估耳鸣患者治疗期间临床改善情况的可行性。利用时间序列特征提取和带有弹性网络正则化的嵌套交叉验证有序回归分析了来自一项多中心随机临床试验的应用程序数据,以基于临床总体印象改善量表(CGI-I)预测临床改善情况。在应用程序50%的依从性(N = 129,8480条记录)下,该模型对测试数据显示出良好的拟合度(麦克法登R2 = 0.82),表明其具有可推广性。临床改善与耳鸣相关想法、下颌张力、耳鸣响度的线性下降、幸福感的增加以及耳鸣响度和痛苦程度的变异性变化有关。这些发现表明,关于耳鸣症状的每日自我报告数据对治疗反应敏感,并能深入了解治疗期间发生的特定症状变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89a8/11733005/1ebbe1e30ffe/41746_2024_1425_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验