Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400 019, India.
Department of Virology, Indian Council of Medical Research, National AIDS Research Institute, Pune, 411 026, India.
AAPS PharmSciTech. 2022 Aug 17;23(7):230. doi: 10.1208/s12249-022-02377-8.
The present investigation aims to develop and explore mannosylated lipid-based carriers to deliver an anti-HIV drug, Etravirine (TMC) and Selenium nanoparticles (SeNPs), to the HIV reservoirs via the mannose receptor. The successful mannosylation was evaluated by the change in zeta potential and lectin binding assay using fluorescence microscopy. Electron microscopy and scattering studies were employed to study the structure and surface of the nanocarrier system. The presence of selenium at the core-shell of the nanocarrier system was confirmed by X-ray photoelectron spectroscopy and energy dispersive X-ray analysis. Further, the in vitro anti-HIV1 efficacy was assessed using HIV1 infected TZM-bl cells followed by in vivo biodistribution studies to evaluate distribution to various reservoirs of HIV. The results exhibited higher effectiveness and a significant increase in the therapeutic index as against the plain drug. The confocal microscopy and flow cytometry studies exhibited the efficient uptake of the coumarin-6 tagged respective formulations. The protective effect of nano selenium toward oxidative stress was evaluated in rats, demonstrating the potential of the lipidic nanoparticle-containing selenium in mitigating oxidative stress in all the major organs. The in vivo biodistribution assessment in rats showed a 12.44, 8.05 and 9.83-fold improvement in the brain, ovary, and lymph node biodistribution, respectively as compared with plain TMC. Delivery of such a combination via mannosylated nanostructured lipid carriers could be an efficient approach for delivering drugs to reservoirs of HIV while simultaneously reducing the oxidative stress induced by such long-term therapies by co-loading Nano-Selenium.
本研究旨在开发和探索甘露糖基脂质载体,通过甘露糖受体将抗 HIV 药物依曲韦林(TMC)和硒纳米颗粒(SeNPs)递送至 HIV 储存库。成功的甘露糖基化通过zeta 电位的变化和使用荧光显微镜的凝集素结合试验进行评估。电子显微镜和散射研究用于研究纳米载体系统的结构和表面。通过 X 射线光电子能谱和能量色散 X 射线分析证实了纳米载体系统的核壳中存在硒。此外,通过使用感染 HIV1 的 TZM-bl 细胞评估体外抗 HIV1 功效,随后进行体内生物分布研究以评估对 HIV 各种储存库的分布。结果表明,与普通药物相比,其具有更高的有效性和治疗指数的显著增加。共焦显微镜和流式细胞术研究表明,相应制剂的香豆素-6 标记物被有效摄取。通过在大鼠中评估纳米硒对氧化应激的保护作用,证明了含有脂质纳米颗粒的硒在减轻所有主要器官中的氧化应激方面的潜力。在大鼠中的体内生物分布评估显示,与普通 TMC 相比,脑、卵巢和淋巴结中的生物分布分别改善了 12.44、8.05 和 9.83 倍。通过甘露糖基化的纳米结构脂质载体递送这种组合可能是一种有效的方法,可将药物递送至 HIV 的储存库,同时通过共载纳米硒来减少此类长期治疗引起的氧化应激。