Friedl Peter, Konstantopoulos Konstantinos, Sahai Erik, Weiner Orion
Radboud University Medical Centre.
Johns Hopkins University.
Fac Rev. 2022 Jul 21;11:18. doi: 10.12703/r-01-0000013. eCollection 2022.
Cells need to couple intracellular actin flows with the substrate to generate forward movement. This has traditionally been studied in the context of specific transmembrane receptors, particularly integrin adhesion receptors, which link extracellular adhesive molecules to the actin cytoskeleton. However, leukocytes and other cells can also migrate using integrin-independent strategies both and , though the cellular and environmental requirements for this mode are not fully understood. In seminal recent work, Reversat . develop a range of innovative 2D and 3D engineered microdevices and probe the biophysical mechanisms underlying T lymphocytes and dendritic cells in conditions of limited substrate adhesion. They identify a physical principle of mechano-coupling between retrograde actin flow and irregular extracellular confinement, which allows the cell to generate mechanical resistance and move in the absence of receptor-mediated adhesion. Through the combined use of experiments and theoretical modeling, this work resolves a long-standing question in cell biology and establishes mechanical interaction with an irregular-shaped 3D environment which may be relevant to cell migration in a range of tissue contexts.
细胞需要将细胞内的肌动蛋白流动与底物耦合,以产生向前运动。传统上,这是在特定跨膜受体的背景下进行研究的,特别是整合素粘附受体,它将细胞外粘附分子与肌动蛋白细胞骨架连接起来。然而,白细胞和其他细胞也可以使用不依赖整合素的策略迁移,尽管这种迁移模式对细胞和环境的要求尚未完全了解。在最近的开创性工作中,雷弗萨特等人开发了一系列创新的二维和三维工程微器件,并在底物粘附有限的条件下探究了T淋巴细胞和树突状细胞的生物物理机制。他们确定了逆行肌动蛋白流动与不规则细胞外限制之间机械耦合的物理原理,这使得细胞能够在没有受体介导的粘附情况下产生机械阻力并移动。通过结合实验和理论建模,这项工作解决了细胞生物学中一个长期存在的问题,并建立了与不规则形状三维环境的机械相互作用,这可能与一系列组织环境中的细胞迁移有关。