Suppr超能文献

细胞力学控制着迁移过程中伪足和片状伪足之间的快速转换。

Cell mechanics control rapid transitions between blebs and lamellipodia during migration.

机构信息

Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.

出版信息

Proc Natl Acad Sci U S A. 2012 Sep 4;109(36):14434-9. doi: 10.1073/pnas.1207968109. Epub 2012 Jul 11.

Abstract

Protrusion formation is an essential step during cell migration. Cells migrating in three-dimensional environments and in vivo can form a wide variety of protrusion types, including actin polymerization-driven lamellipodia, and contractility-driven blebs. The ability to switch between different protrusions has been proposed to facilitate motility in complex environments and to promote cancer dissemination. However, plasticity in protrusion formation has so far mostly been investigated in the context of transitions between amoeboid and mesenchymal migration modes, which involve substantial changes in overall cell morphology. As a result, the minimal requirements of transitions between blebs and lamellipodia, as well as the time scales on which they occur, remain unknown. To address these questions, we investigated protrusion switching during cell migration at the single cell level. Using cells that can be induced to form either blebs or lamellipodia, we systematically assessed the mechanical requirements, as well as the dynamics, of switching between protrusion types. We demonstrate that shifting the balance between actin protrusivity and actomyosin contractility leads to immediate transitions between blebs and lamellipodia in migrating cells. Switching occurred without changes in global cell shape, polarity, or cell adhesion. Furthermore, rapid transitions between blebs and lamellipodia could also be triggered upon changes in substrate adhesion during migration on micropatterned surfaces. Together, our data reveal that the type of protrusion formed by migrating cells can be dynamically controlled independently of overall cell morphology, suggesting that protrusion formation is an autonomous module in the regulatory network that controls the plasticity of cell migration.

摘要

突起的形成是细胞迁移的一个必要步骤。在三维环境中和体内迁移的细胞可以形成各种各样的突起类型,包括由肌动蛋白聚合驱动的片状伪足和由收缩性驱动的泡状伪足。人们提出,能够在不同的突起之间转换的能力有助于在复杂环境中运动,并促进癌症的扩散。然而,到目前为止,突起形成的可塑性主要是在变形虫和间质迁移模式之间的转换的背景下进行研究的,这涉及到整个细胞形态的实质性变化。因此,泡状伪足和片状伪足之间转换的最小要求以及它们发生的时间尺度仍然未知。为了解决这些问题,我们在单细胞水平上研究了细胞迁移过程中的突起转换。使用可以诱导形成泡状伪足或片状伪足的细胞,我们系统地评估了突起类型之间转换的力学要求和动力学。我们证明,在迁移细胞中,肌动蛋白突起性和肌动球蛋白收缩性之间的平衡的改变会导致泡状伪足和片状伪足之间的即时转换。转换发生时,细胞的整体形状、极性或细胞黏附性没有变化。此外,在微图案化表面上迁移过程中基质黏附力的变化也可以触发泡状伪足和片状伪足之间的快速转换。总之,我们的数据表明,迁移细胞形成的突起类型可以独立于整体细胞形态进行动态控制,这表明突起形成是控制细胞迁移可塑性的调控网络中的一个自主模块。

相似文献

1
Cell mechanics control rapid transitions between blebs and lamellipodia during migration.
Proc Natl Acad Sci U S A. 2012 Sep 4;109(36):14434-9. doi: 10.1073/pnas.1207968109. Epub 2012 Jul 11.
2
The role and regulation of blebs in cell migration.
Curr Opin Cell Biol. 2013 Oct;25(5):582-90. doi: 10.1016/j.ceb.2013.05.005. Epub 2013 Jun 17.
3
Viscoelastic gel-strip model for the simulation of migrating cells.
Ann Biomed Eng. 2011 Nov;39(11):2735-49. doi: 10.1007/s10439-011-0360-z. Epub 2011 Jul 29.
5
Actin dynamics in cell migration.
Essays Biochem. 2019 Oct 31;63(5):483-495. doi: 10.1042/EBC20190015.
6
Efficiency of lamellipodia protrusion is determined by the extent of cytosolic actin assembly.
Mol Biol Cell. 2017 May 15;28(10):1311-1325. doi: 10.1091/mbc.E16-05-0334. Epub 2017 Mar 22.
7
Control of directed cell migration in vivo by membrane-to-cortex attachment.
PLoS Biol. 2010 Nov 30;8(11):e1000544. doi: 10.1371/journal.pbio.1000544.
8
Cortactin promotes cell motility by enhancing lamellipodial persistence.
Curr Biol. 2005 Jul 26;15(14):1276-85. doi: 10.1016/j.cub.2005.06.043.
9
Real-time monitoring of cell protrusion dynamics by impedance responses.
Sci Rep. 2015 May 15;5:10206. doi: 10.1038/srep10206.
10
Migration and actin protrusion in melanoma cells are regulated by EB1 protein.
Cancer Lett. 2009 Oct 18;284(1):30-6. doi: 10.1016/j.canlet.2009.04.007. Epub 2009 May 7.

引用本文的文献

1
The role of dynamic reciprocity in 3D cell migration: connecting cell and matrix mechanics to migratory plasticity.
NPJ Biol Phys Mech. 2025;2(1):21. doi: 10.1038/s44341-025-00027-1. Epub 2025 Sep 3.
2
Coupled Dynamics in Phenotype and Tissue Spaces Shape the Three-Dimensional Cancer Invasion.
PRX Life. 2024 Dec;2(4). doi: 10.1103/prxlife.2.043022. Epub 2024 Dec 24.
3
Aligned Collagen Fibers Drive Distinct Traction Force Signatures to Regulate Contact Guidance.
ACS Nano. 2025 Aug 26;19(33):30165-30185. doi: 10.1021/acsnano.5c06736. Epub 2025 Aug 14.
6
Frictiotaxis underlies focal adhesion-independent durotaxis.
Nat Commun. 2025 Apr 23;16(1):3811. doi: 10.1038/s41467-025-58912-1.
7
Live imaging in zebrafish reveals tissue-specific strategies for amoeboid migration.
Development. 2025 Apr 15;152(8). doi: 10.1242/dev.204351. Epub 2025 Apr 28.
8
Cell signaling facilitates apical constriction by basolaterally recruiting Arp2/3 via Rac and WAVE.
J Cell Biol. 2025 May 5;224(5). doi: 10.1083/jcb.202409133. Epub 2025 Mar 5.
9
Physical principles and mechanisms of cell migration.
NPJ Biol Phys Mech. 2025;2(1):2. doi: 10.1038/s44341-024-00008-w. Epub 2025 Jan 16.

本文引用的文献

1
Life at the leading edge.
Cell. 2011 Jun 24;145(7):1012-22. doi: 10.1016/j.cell.2011.06.010.
2
An adhesion-dependent switch between mechanisms that determine motile cell shape.
PLoS Biol. 2011 May;9(5):e1001059. doi: 10.1371/journal.pbio.1001059. Epub 2011 May 3.
3
Control of directed cell migration in vivo by membrane-to-cortex attachment.
PLoS Biol. 2010 Nov 30;8(11):e1000544. doi: 10.1371/journal.pbio.1000544.
4
The plasticity of cytoskeletal dynamics underlying neoplastic cell migration.
Curr Opin Cell Biol. 2010 Oct;22(5):690-6. doi: 10.1016/j.ceb.2010.08.020. Epub 2010 Sep 7.
5
Interference reflection microscopy.
Curr Protoc Cell Biol. 2009 Dec;Chapter 4:Unit 4.23. doi: 10.1002/0471143030.cb0423s45.
6
A role for Rho GTPases and cell-cell adhesion in single-cell motility in vivo.
Nat Cell Biol. 2010 Jan;12(1):47-53; sup pp 1-11. doi: 10.1038/ncb2003. Epub 2009 Dec 13.
7
Plasticity of cell migration: a multiscale tuning model.
J Cell Biol. 2010 Jan 11;188(1):11-9. doi: 10.1083/jcb.200909003. Epub 2009 Dec 1.
8
In vivo roles for Arp2/3 in cortical actin organization during C. elegans gastrulation.
J Cell Sci. 2009 Nov 1;122(Pt 21):3983-93. doi: 10.1242/jcs.057562.
9
Role of cortical tension in bleb growth.
Proc Natl Acad Sci U S A. 2009 Nov 3;106(44):18581-6. doi: 10.1073/pnas.0903353106. Epub 2009 Oct 21.
10
A genetically encoded photoactivatable Rac controls the motility of living cells.
Nature. 2009 Sep 3;461(7260):104-8. doi: 10.1038/nature08241. Epub 2009 Aug 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验