Suppr超能文献

弹性折纸的稳健折叠。

Robust folding of elastic origami.

机构信息

Department of Physics, University of Massachusetts Amherst, Amherst, MA, 01003, USA.

Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA.

出版信息

Soft Matter. 2022 Aug 31;18(34):6384-6391. doi: 10.1039/d2sm00369d.

Abstract

Self-folding origami, structures that are engineered flat to fold into targeted, three-dimensional shapes, have many potential engineering applications. Though significant effort in recent years has been devoted to designing fold patterns that can achieve a variety of target shapes, recent work has also made clear that many origami structures exhibit multiple folding pathways, with a proliferation of geometric folding pathways as the origami structure becomes complex. The competition between these pathways can lead to structures that are programmed for one shape, yet fold incorrectly. To disentangle the features that lead to misfolding, we introduce a model of self-folding origami that accounts for the finite stretching rigidity of the origami faces and allows the computation of energy landscapes that lead to misfolding. We find that, in addition to the geometrical features of the origami, the finite elasticity of the nearly-flat origami configurations regulates the proliferation of potential misfolded states through a series of saddle-node bifurcations. We apply our model to one of the most common origami motifs, the symmetric "bird's foot," a single vertex with four folds. We show that though even a small error in programmed fold angles induces metastability in rigid origami, elasticity allows one to tune resilience to misfolding. In a more complex design, the "Randlett flapping bird," which has thousands of potential competing states, we further show that the number of actual observed minima is strongly determined by the structure's elasticity. In general, we show that elastic origami with both stiffer folds and less bendable faces self-folds better.

摘要

自折叠折纸,即经过工程设计可以折叠成特定三维形状的平面结构,在许多工程应用中具有很大的潜力。尽管近年来在设计能够实现各种目标形状的折叠模式方面做出了巨大努力,但最近的工作也清楚地表明,许多折纸结构表现出多种折叠途径,随着折纸结构变得复杂,几何折叠途径呈指数级增长。这些途径之间的竞争可能导致结构被编程为一种形状,但折叠不正确。为了解释导致错误折叠的特征,我们引入了一个自折叠折纸模型,该模型考虑了折纸面的有限拉伸刚度,并允许计算导致错误折叠的能量景观。我们发现,除了折纸的几何特征外,几乎平坦的折纸配置的有限弹性通过一系列鞍结分岔来调节潜在错误折叠状态的增殖。我们将我们的模型应用于最常见的折纸图案之一,对称的“鸟脚”,即具有四个折叠的单个顶点。我们表明,即使编程折叠角度的微小误差也会导致刚性折纸的亚稳性,但弹性允许人们调整对错误折叠的弹性。在更复杂的设计中,“Randlett 拍打鸟”,它具有数千个潜在的竞争状态,我们进一步表明,实际观察到的最小值的数量强烈取决于结构的弹性。一般来说,我们表明,具有更硬折叠和更不易弯曲的面的弹性折纸自折叠效果更好。

相似文献

1
Robust folding of elastic origami.弹性折纸的稳健折叠。
Soft Matter. 2022 Aug 31;18(34):6384-6391. doi: 10.1039/d2sm00369d.
2
Guiding the folding pathway of DNA origami.引导 DNA 折纸的折叠途径。
Nature. 2015 Sep 3;525(7567):82-6. doi: 10.1038/nature14860. Epub 2015 Aug 19.
4
Hidden symmetries generate rigid folding mechanisms in periodic origami.隐藏的对称生成周期性折纸中的刚性折叠机制。
Proc Natl Acad Sci U S A. 2020 Dec 1;117(48):30252-30259. doi: 10.1073/pnas.2005089117. Epub 2020 Nov 16.
6
Origami tubes with reconfigurable polygonal cross-sections.具有可重构多边形横截面的折纸管。
Proc Math Phys Eng Sci. 2016 Jan;472(2185):20150607. doi: 10.1098/rspa.2015.0607.
7
Rigid folding equations of degree-6 origami vertices.六次折纸顶点的刚性折叠方程。
Proc Math Phys Eng Sci. 2022 Apr;478(2260):20220051. doi: 10.1098/rspa.2022.0051. Epub 2022 Apr 13.
8
Elastic theory of origami-based metamaterials.基于折纸的超材料的弹性理论。
Phys Rev E. 2016 Mar;93(3):033005. doi: 10.1103/PhysRevE.93.033005. Epub 2016 Mar 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验