Suppr超能文献

亚兆赫兹的纳秒脉冲串能在极低电场阈值下激发神经元,且不会造成膜损伤。

Sub-MHz bursts of nanosecond pulses excite neurons at paradoxically low electric field thresholds without membrane damage.

作者信息

Silkunas Mantas, Gudvangen Emily, Novickij Vitalij, Pakhomov Andrei G

机构信息

Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA; Institute for Digestive System Research, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania.

Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA.

出版信息

Biochim Biophys Acta Biomembr. 2022 Nov 1;1864(11):184034. doi: 10.1016/j.bbamem.2022.184034. Epub 2022 Aug 15.

Abstract

Neuromodulation applications of nanosecond electric pulses (nsEP) are hindered by their low potency to elicit action potentials in neurons. Excitation by a single nsEP requires a strong electric field which injures neurons by electroporation. We bypassed the high electric field requirement by replacing single nsEP stimuli with high-frequency brief nsEP bursts. In hippocampal neurons, excitation thresholds progressively decreased at nsEP frequencies above 20-200 kHz, with up to 20-30-fold reduction at sub-MHz and MHz rates. For a fixed burst duration, thresholds were determined by the duty cycle, irrespective of the specific nsEP duration, rate, or number of pulses per burst. For 100-μs bursts of 100-, 400-, or 800-ns pulses, the threshold decreased as a power function when the duty cycle exceeded 3-5 %. nsEP bursts were compared with single "long" pulses whose duration and amplitude matched the duration and the time-average amplitude of the burst. Such pulses deliver the same electric charge as bursts, within the same time interval. High-frequency nsEP bursts excited neurons at the time-average electric field 2-3 times below the threshold for a single long pulse. For example, the excitation threshold of 139 ± 14 V/cm for a single 100-μs pulse decreased to 57 ± 8 V/cm for a 100-μs burst of 100-ns, 0.25-MHz pulses (p < 0.001). Applying nsEP in bursts reduced or prevented the loss of excitability in multiple stimulation attempts. Stimulation by high-frequency nsEP bursts is a powerful novel approach to excite neurons at paradoxically low electric charge while also avoiding the electroporative membrane damage.

摘要

纳秒电脉冲(nsEP)的神经调节应用受到其在神经元中引发动作电位能力较低的阻碍。单个nsEP的激发需要强电场,而这会通过电穿孔损伤神经元。我们通过用高频短nsEP脉冲串替代单个nsEP刺激,绕过了对高电场的需求。在海马神经元中,当nsEP频率高于20 - 200kHz时,激发阈值逐渐降低,在亚兆赫兹和兆赫兹频率下降低了20 - 30倍。对于固定的脉冲串持续时间,阈值由占空比决定,与特定的nsEP持续时间、频率或每个脉冲串的脉冲数无关。对于100ns、400ns或800ns脉冲的100μs脉冲串,当占空比超过3 - 5%时,阈值作为幂函数降低。将nsEP脉冲串与持续时间和幅度与脉冲串的持续时间和时间平均幅度相匹配的单个“长”脉冲进行比较。这种脉冲在相同时间间隔内传递与脉冲串相同的电荷量。高频nsEP脉冲串在时间平均电场比单个长脉冲阈值低2 - 3倍时就能激发神经元。例如,单个100μs脉冲的激发阈值为139±14V/cm,对于100ns、0.25MHz脉冲的100μs脉冲串,激发阈值降至57±8V/cm(p < 0.001)。以脉冲串形式施加nsEP可减少或防止多次刺激尝试中兴奋性的丧失。高频nsEP脉冲串刺激是一种强大的新方法,能够以极低的电荷量激发神经元,同时还能避免电穿孔引起的膜损伤。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验