Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA.
Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA; Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA, USA.
Biochem Biophys Res Commun. 2019 Oct 22;518(4):759-764. doi: 10.1016/j.bbrc.2019.08.133. Epub 2019 Aug 28.
Intense nanosecond pulsed electric field (nsPEF) is a novel modality for cell activation and nanoelectroporation. Applications of nsPEF in research and therapy are hindered by a high electric field requirement, typically from 1 to over 50 kV/cm to elicit any bioeffects. We show how this requirement can be overcome by engaging temporal summation when pulses are compressed into high-rate bursts (up to several MHz). This approach was tested for excitation of ventricular cardiomyocytes and peripheral nerve fibers; for membrane electroporation of cardiomyocytes, CHO, and HEK cells; and for killing EL-4 cells. MHz compression of nsPEF bursts (100-1000 pulses) enables excitation at only 0.01-0.15 kV/cm and electroporation already at 0.4-0.6 kV/cm. Clear separation of excitation and electroporation thresholds allows for multiple excitation cycles without membrane disruption. The efficiency of nsPEF bursts increases with the duty cycle (by increasing either pulse duration or repetition rate) and with increasing the total time "on" (by increasing either pulse duration or number). For some endpoints, the efficiency of nsPEF bursts matches a single "long" pulse whose amplitude and duration equal the time-average amplitude and duration of the bursts. For other endpoints this rule is not valid, presumably because of nsPEF-specific bioeffects and/or possible modification of targets already during the burst. MHz compression of nsPEF bursts is a universal and efficient way to lower excitation thresholds and facilitate electroporation.
纳秒级强脉冲电场(nsPEF)是一种用于细胞激活和纳米电穿孔的新型模式。nsPEF 在研究和治疗中的应用受到高电场要求的阻碍,通常需要 1 到超过 50 kV/cm 才能产生任何生物效应。我们展示了如何通过在脉冲压缩成高速率脉冲串(高达几 MHz)时利用时间总和来克服这一要求。这种方法已在心室肌细胞和周围神经纤维的激发、心肌细胞、CHO 和 HEK 细胞的细胞膜电穿孔以及 EL-4 细胞的杀伤中进行了测试。纳秒级强脉冲电场脉冲串的 MHz 压缩(100-1000 个脉冲)可实现仅 0.01-0.15 kV/cm 的激发和 0.4-0.6 kV/cm 的电穿孔。激发和电穿孔阈值的明显分离允许在不破坏细胞膜的情况下进行多次激发循环。nsPEF 脉冲串的效率随着占空比(通过增加脉冲持续时间或重复率)和总“开启”时间(通过增加脉冲持续时间或数量)的增加而增加。对于某些终点,nsPEF 脉冲串的效率与单个“长”脉冲相当,其幅度和持续时间等于脉冲串的时间平均幅度和持续时间。对于其他终点,此规则不成立,大概是因为存在 nsPEF 特有的生物效应和/或在脉冲串期间可能对靶标进行了修改。nsPEF 脉冲串的 MHz 压缩是一种通用且有效的方法,可以降低激发阈值并促进电穿孔。