Suppr超能文献

AlphaFold、变构和经典药物发现:前进的道路。

AlphaFold, allosteric, and orthosteric drug discovery: Ways forward.

机构信息

Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.

Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.

出版信息

Drug Discov Today. 2023 Jun;28(6):103551. doi: 10.1016/j.drudis.2023.103551. Epub 2023 Mar 11.

Abstract

Drug discovery is arguably a highly challenging and significant interdisciplinary aim. The stunning success of the artificial intelligence-powered AlphaFold, whose latest version is buttressed by an innovative machine-learning approach that integrates physical and biological knowledge about protein structures, raised drug discovery hopes that unsurprisingly, have not come to bear. Even though accurate, the models are rigid, including the drug pockets. AlphaFold's mixed performance poses the question of how its power can be harnessed in drug discovery. Here we discuss possible ways of going forward wielding its strengths, while bearing in mind what AlphaFold can and cannot do. For kinases and receptors, an input enriched in active (ON) state models can better AlphaFold's chance of rational drug design success.

摘要

药物发现可以说是一个极具挑战性和重要的跨学科目标。人工智能驱动的 AlphaFold 的惊人成功,其最新版本得益于一种创新的机器学习方法,该方法整合了关于蛋白质结构的物理和生物知识,这无疑提高了药物发现的希望,但这些希望并未实现。尽管模型准确,但它们是僵化的,包括药物口袋。AlphaFold 的混合性能提出了一个问题,即如何利用它的优势进行药物发现。在这里,我们讨论了利用其优势的可能方法,同时牢记 AlphaFold 能做什么和不能做什么。对于激酶和受体,富含活性(ON)状态模型的输入可以提高 AlphaFold 合理药物设计成功的机会。

相似文献

1
AlphaFold, allosteric, and orthosteric drug discovery: Ways forward.AlphaFold、变构和经典药物发现:前进的道路。
Drug Discov Today. 2023 Jun;28(6):103551. doi: 10.1016/j.drudis.2023.103551. Epub 2023 Mar 11.
3
Machine learning approaches in predicting allosteric sites.基于机器学习的别构位点预测方法。
Curr Opin Struct Biol. 2024 Apr;85:102774. doi: 10.1016/j.sbi.2024.102774. Epub 2024 Feb 13.
5
AlphaFold, Artificial Intelligence (AI), and Allostery.AlphaFold、人工智能 (AI) 和变构。
J Phys Chem B. 2022 Sep 1;126(34):6372-6383. doi: 10.1021/acs.jpcb.2c04346. Epub 2022 Aug 17.
9
Use of allosteric targets in the discovery of safer drugs.变构靶点在更安全药物研发中的应用。
Med Princ Pract. 2013;22(5):418-26. doi: 10.1159/000350417. Epub 2013 May 23.
10
Correlation Between Allosteric and Orthosteric Sites.变构和正构结合位点的相关性。
Adv Exp Med Biol. 2019;1163:89-105. doi: 10.1007/978-981-13-8719-7_5.

引用本文的文献

本文引用的文献

3
4
Predicting protein flexibility with AlphaFold.用 AlphaFold 预测蛋白质的柔韧性。
Proteins. 2023 Jun;91(6):847-855. doi: 10.1002/prot.26471. Epub 2023 Feb 3.
7
AlphaFill: enriching AlphaFold models with ligands and cofactors.AlphaFill:利用配体和辅因子丰富 AlphaFold 模型。
Nat Methods. 2023 Feb;20(2):205-213. doi: 10.1038/s41592-022-01685-y. Epub 2022 Nov 24.
10
Estimating the Similarity between Protein Pockets.估算蛋白质口袋之间的相似性。
Int J Mol Sci. 2022 Oct 18;23(20):12462. doi: 10.3390/ijms232012462.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验