Suppr超能文献

AlphaFold、变构和经典药物发现:前进的道路。

AlphaFold, allosteric, and orthosteric drug discovery: Ways forward.

机构信息

Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.

Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.

出版信息

Drug Discov Today. 2023 Jun;28(6):103551. doi: 10.1016/j.drudis.2023.103551. Epub 2023 Mar 11.

Abstract

Drug discovery is arguably a highly challenging and significant interdisciplinary aim. The stunning success of the artificial intelligence-powered AlphaFold, whose latest version is buttressed by an innovative machine-learning approach that integrates physical and biological knowledge about protein structures, raised drug discovery hopes that unsurprisingly, have not come to bear. Even though accurate, the models are rigid, including the drug pockets. AlphaFold's mixed performance poses the question of how its power can be harnessed in drug discovery. Here we discuss possible ways of going forward wielding its strengths, while bearing in mind what AlphaFold can and cannot do. For kinases and receptors, an input enriched in active (ON) state models can better AlphaFold's chance of rational drug design success.

摘要

药物发现可以说是一个极具挑战性和重要的跨学科目标。人工智能驱动的 AlphaFold 的惊人成功,其最新版本得益于一种创新的机器学习方法,该方法整合了关于蛋白质结构的物理和生物知识,这无疑提高了药物发现的希望,但这些希望并未实现。尽管模型准确,但它们是僵化的,包括药物口袋。AlphaFold 的混合性能提出了一个问题,即如何利用它的优势进行药物发现。在这里,我们讨论了利用其优势的可能方法,同时牢记 AlphaFold 能做什么和不能做什么。对于激酶和受体,富含活性(ON)状态模型的输入可以提高 AlphaFold 合理药物设计成功的机会。

相似文献

1
AlphaFold, allosteric, and orthosteric drug discovery: Ways forward.
Drug Discov Today. 2023 Jun;28(6):103551. doi: 10.1016/j.drudis.2023.103551. Epub 2023 Mar 11.
3
Machine learning approaches in predicting allosteric sites.
Curr Opin Struct Biol. 2024 Apr;85:102774. doi: 10.1016/j.sbi.2024.102774. Epub 2024 Feb 13.
4
Computational Tools for Allosteric Drug Discovery: Site Identification and Focus Library Design.
Methods Mol Biol. 2017;1529:439-446. doi: 10.1007/978-1-4939-6637-0_23.
5
AlphaFold, Artificial Intelligence (AI), and Allostery.
J Phys Chem B. 2022 Sep 1;126(34):6372-6383. doi: 10.1021/acs.jpcb.2c04346. Epub 2022 Aug 17.
7
Bcr-Abl Allosteric Inhibitors: Where We Are and Where We Are Going to.
Molecules. 2020 Sep 14;25(18):4210. doi: 10.3390/molecules25184210.
8
Druggable orthosteric and allosteric hot spots to target protein-protein interactions.
Curr Pharm Des. 2014;20(8):1293-301. doi: 10.2174/13816128113199990073.
9
Use of allosteric targets in the discovery of safer drugs.
Med Princ Pract. 2013;22(5):418-26. doi: 10.1159/000350417. Epub 2013 May 23.
10
Correlation Between Allosteric and Orthosteric Sites.
Adv Exp Med Biol. 2019;1163:89-105. doi: 10.1007/978-981-13-8719-7_5.

引用本文的文献

1
Longitudinal big biological data in the AI era.
Mol Syst Biol. 2025 Aug 5. doi: 10.1038/s44320-025-00134-0.
3
Structural insights into Beclin 1 interactions with it's regulators for autophagy modulation.
Comput Struct Biotechnol J. 2025 Jul 7;27:3005-3035. doi: 10.1016/j.csbj.2025.06.044. eCollection 2025.
5
Exploiting allosteric modulation: a new frontier for precision medicine.
Mol Biol Rep. 2025 Jun 4;52(1):549. doi: 10.1007/s11033-025-10650-9.
6
New Insights into the Diagnosis and Treatment of Hepatocellular Carcinoma.
Biomedicines. 2025 May 20;13(5):1244. doi: 10.3390/biomedicines13051244.
7
MAST Kinases' Function and Regulation: Insights from Structural Modeling and Disease Mutations.
Biomedicines. 2025 Apr 9;13(4):925. doi: 10.3390/biomedicines13040925.
8
Molecular Dynamics as a Precision Therapy: A Perspective on Epileptic Encephalopathies.
Mol Diagn Ther. 2025 Apr 11. doi: 10.1007/s40291-025-00780-y.
9
Can Deep Learning Blind Docking Methods be Used to Predict Allosteric Compounds?
J Chem Inf Model. 2025 Apr 14;65(7):3737-3748. doi: 10.1021/acs.jcim.5c00331. Epub 2025 Apr 1.
10
Allostery in Disease: Anticancer Drugs, Pockets, and the Tumor Heterogeneity Challenge.
J Mol Biol. 2025 Feb 26:169050. doi: 10.1016/j.jmb.2025.169050.

本文引用的文献

1
Evolutionary-scale prediction of atomic-level protein structure with a language model.
Science. 2023 Mar 17;379(6637):1123-1130. doi: 10.1126/science.ade2574. Epub 2023 Mar 16.
2
Benchmarking Refined and Unrefined AlphaFold2 Structures for Hit Discovery.
J Chem Inf Model. 2023 Mar 27;63(6):1656-1667. doi: 10.1021/acs.jcim.2c01219. Epub 2023 Mar 10.
3
How good are AlphaFold models for docking-based virtual screening?
iScience. 2022 Dec 30;26(1):105920. doi: 10.1016/j.isci.2022.105920. eCollection 2023 Jan 20.
4
Predicting protein flexibility with AlphaFold.
Proteins. 2023 Jun;91(6):847-855. doi: 10.1002/prot.26471. Epub 2023 Feb 3.
5
Opinion: Protein folds vs. protein folding: Differing questions, different challenges.
Proc Natl Acad Sci U S A. 2023 Jan 3;120(1):e2214423119. doi: 10.1073/pnas.2214423119. Epub 2022 Dec 29.
6
Evaluation of AlphaFold2 structures as docking targets.
Protein Sci. 2023 Jan;32(1):e4530. doi: 10.1002/pro.4530.
7
AlphaFill: enriching AlphaFold models with ligands and cofactors.
Nat Methods. 2023 Feb;20(2):205-213. doi: 10.1038/s41592-022-01685-y. Epub 2022 Nov 24.
8
The impact of AlphaFold Protein Structure Database on the fields of life sciences.
Proteomics. 2023 Sep;23(17):e2200128. doi: 10.1002/pmic.202200128. Epub 2022 Nov 27.
9
Improving peptide-protein docking with AlphaFold-Multimer using forced sampling.
Front Bioinform. 2022 Sep 26;2:959160. doi: 10.3389/fbinf.2022.959160. eCollection 2022.
10
Estimating the Similarity between Protein Pockets.
Int J Mol Sci. 2022 Oct 18;23(20):12462. doi: 10.3390/ijms232012462.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验