Department of Chemical Engineering, School of Chemical, Petroleum and Gas Engineering, Shiraz University, Shiraz, Iran.
Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, 7400 Merton Minter, San Antonio, TX, 78229, USA.
Sci Rep. 2022 Aug 18;12(1):14022. doi: 10.1038/s41598-022-18177-w.
The multidrug resistance of numerous pathogenic microorganisms is a serious challenge that raises global healthcare concerns. Multi-target medications and combinatorial therapeutics are much more effective than single-target drugs due to their synergistic impact on the systematic activities of microorganisms. Designing efficient combinatorial therapeutics can benefit from identification of synthetic lethals (SLs). An SL is a set of non-essential targets (i.e., reactions or genes) that prevent the proliferation of a microorganism when they are "knocked out" simultaneously. To facilitate the identification of SLs, we introduce Rapid-SL, a new multimodal implementation of the Fast-SL method, using the depth-first search algorithm. The advantages of Rapid-SL over Fast-SL include: (a) the enumeration of all SLs that have an arbitrary cardinality, (b) a shorter runtime due to search space reduction, (c) embarrassingly parallel computations, and (d) the targeted identification of SLs. Targeted identification is important because the enumeration of higher order SLs demands the examination of too many reaction sets. Accordingly, we present specific applications of Rapid-SL for the efficient targeted identification of SLs. In particular, we found up to 67% of all quadruple SLs by investigating about 1% of the search space. Furthermore, 307 sextuples, 476 septuples, and over 9000 octuples are found for Escherichia coli genome-scale model, iAF1260.
众多致病微生物的多药耐药性是一个严重的挑战,引起了全球医疗保健的关注。多靶点药物和联合治疗由于对微生物系统活动的协同影响,比单靶点药物更有效。设计有效的联合治疗可以受益于合成致死物 (SLs) 的鉴定。SL 是一组非必需的靶标(即反应或基因),当它们同时“敲除”时,可阻止微生物的增殖。为了促进 SL 的鉴定,我们引入了 Rapid-SL,这是 Fast-SL 方法的一种新的多模态实现,使用深度优先搜索算法。Rapid-SL 相对于 Fast-SL 的优势包括:(a) 枚举具有任意基数的所有 SL;(b) 由于搜索空间减少,运行时间更短;(c) 尴尬的并行计算;以及 (d) SL 的靶向识别。靶向识别很重要,因为枚举高阶 SL 需要检查太多的反应集。因此,我们提出了 Rapid-SL 的具体应用,用于高效靶向识别 SL。特别是,我们通过调查大约 1%的搜索空间,发现了高达所有四重 SL 的 67%。此外,还发现了大肠杆菌基因组规模模型 iAF1260 的 307 个六重 SL、476 个七重 SL 和超过 9000 个八重 SL。