Siddiqui Fardeen, Ulker Meliha, Laizure Isabelle E, Johnson Kristen C
University of New Hampshire Manchester, Manchester, NH USA.
MicroPubl Biol. 2022 Aug 1;2022. doi: 10.17912/micropub.biology.000616. eCollection 2022.
Multiple strains of are resistant to antibiotics, including the well-known methicillin-resistant (MRSA). We share an engineered plasmid device in that lyses the disease-causing pathogen, The device was engineered using BioBrick parts obtained from the International Genetically Engineered Machine foundation (iGEM). The cI-blue-lysostaphin device consists of a temperature-sensitive promoter that is activated under physiological fever temperatures above 35°C that drives expression of a blue chromoprotein reporter and mature truncated lysostaphin enzyme. The functioning cI-blue-lysostaphin device was tested for optimal lysis conditions in MM294 and DH5α chassis and across incubation temperatures ranging from 30-42°C. We conclude that the lysostaphin activity of the cI-blue-lysostaphin device differs between chassis and increases with greater incubation temperature.
多种菌株对抗生素具有抗性,包括著名的耐甲氧西林金黄色葡萄球菌(MRSA)。我们在金黄色葡萄球菌中共享一种工程化质粒装置,该装置可裂解致病病原体金黄色葡萄球菌。该装置是使用从国际遗传工程机器基金会(iGEM)获得的BioBrick部件构建的。cI-蓝色-溶葡萄球菌素装置由一个温度敏感型启动子组成,该启动子在高于35°C的生理发热温度下被激活,驱动蓝色显色蛋白报告基因和成熟的截短溶葡萄球菌素酶的表达。在MM294和DH5α底盘中以及在30-42°C的孵育温度范围内测试了功能正常的cI-蓝色-溶葡萄球菌素装置的最佳裂解条件。我们得出结论,cI-蓝色-溶葡萄球菌素装置的溶葡萄球菌素活性在不同底盘之间存在差异,并且随着孵育温度的升高而增加。