Li Junshan, Tian Xi, Wang Xiang, Zhang Ting, Spadaro Maria Chiara, Arbiol Jordi, Li Luming, Zuo Yong, Cabot Andreu
Institute for Advanced Study, Chengdu University, Chengdu 610106, China.
College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
Inorg Chem. 2022 Aug 29;61(34):13433-13441. doi: 10.1021/acs.inorgchem.2c01695. Epub 2022 Aug 19.
The electrocatalytic oxidation of alcohols is a potentially cost-effective strategy for the synthesis of valuable chemicals at the anode while simultaneously generating hydrogen at the cathode. For this approach to become commercially viable, high-activity, low-cost, and stable catalysts need to be developed. Herein, we demonstrate an electrocatalyst based on earth-abundant nickel and sulfur elements. Experimental investigations reveal the produced NiS displays excellent electrocatalytic performance associated with a higher electrochemical surface area (ECSA) and the presence of sulfate ions on the formed NiOOH surface in basic media. The current densities reached for the oxidation of ethanol and methanol at 1.6 V vs reversible hydrogen electrode (RHE) are up to 175.5 and 145.1 mA cm, respectively. At these high current densities, the Faradaic efficiency of methanol to formate conversion is 98% and that of ethanol to acetate is 81%. Density functional theory calculations demonstrate the presence of the generated sulfate groups to modify the electronic properties of the NiOOH surface, improving electroconductivity and electron transfer. Besides, calculations are used to determine the reaction energy barriers, revealing the dehydrogenation of ethoxy groups to be more favorable than that of methoxy on the catalyst surface, which explains the highest current densities obtained for ethanol oxidation.
醇类的电催化氧化是一种在阳极合成有价值化学品同时在阴极产生氢气的潜在具有成本效益的策略。为使这种方法具有商业可行性,需要开发高活性、低成本且稳定的催化剂。在此,我们展示了一种基于储量丰富的镍和硫元素的电催化剂。实验研究表明,所制备的硫化镍表现出优异的电催化性能,这与较高的电化学表面积(ECSA)以及碱性介质中形成的氢氧化氧镍表面存在硫酸根离子有关。在相对于可逆氢电极(RHE)为1.6 V时,乙醇和甲醇氧化所达到的电流密度分别高达175.5和145.1 mA cm²。在这些高电流密度下,甲醇转化为甲酸的法拉第效率为98%,乙醇转化为乙酸的法拉第效率为81%。密度泛函理论计算表明,生成的硫酸根基团的存在改变了氢氧化氧镍表面的电子性质,提高了电导率和电子转移。此外,通过计算确定了反应能垒,结果表明在催化剂表面乙氧基的脱氢比甲氧基更有利,这解释了乙醇氧化获得的最高电流密度。