Kos Žiga, Dunkel Jörn
Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia.
Sci Adv. 2022 Aug 19;8(33):eabp8371. doi: 10.1126/sciadv.abp8371.
Liquid crystals (LCs) can host robust topological defect structures that essentially determine their optical and elastic properties. Although recent experimental progress enables precise control over nematic LC defects, their practical potential for information storage and processing has yet to be explored. Here, we introduce the concept of nematic bits (nbits) by exploiting a quaternionic mapping from LC defects to the Poincaré-Bloch sphere. Through theory and simulations, we demonstrate how single-nbit operations can be implemented using electric fields, to construct LC analogs of Pauli, Hadamard, and other elementary logic gates. Using nematoelastic interactions, we show how four-nbit configurations can realize universal classical NOR and NAND gates. Last, we demonstrate the implementation of generalized logical functions that take values on the Poincaré-Bloch sphere. These results open a route toward the implementation of classical digital and nonclassical continuous computation strategies in topological soft matter systems.
液晶(LCs)能够容纳强大的拓扑缺陷结构,这些结构本质上决定了它们的光学和弹性特性。尽管最近的实验进展使得能够精确控制向列型液晶缺陷,但它们在信息存储和处理方面的实际潜力尚未得到探索。在这里,我们通过利用从液晶缺陷到庞加莱 - 布洛赫球的四元数映射引入了向列型比特(nbits)的概念。通过理论和模拟,我们展示了如何使用电场实现单比特操作,以构建泡利、哈达玛和其他基本逻辑门的液晶类似物。利用向列弹性相互作用,我们展示了四比特配置如何实现通用经典或非门和与非门。最后,我们展示了在庞加莱 - 布洛赫球上取值的广义逻辑函数的实现。这些结果为在拓扑软物质系统中实现经典数字和非经典连续计算策略开辟了一条途径。