School of Chemistry, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK.
Nat Commun. 2020 Mar 18;11(1):1442. doi: 10.1038/s41467-020-15190-3.
Current computers are limited by the von Neumann bottleneck, which constrains the throughput between the processing unit and the memory. Chemical processes have the potential to scale beyond current computing architectures as the processing unit and memory reside in the same space, performing computations through chemical reactions, yet their lack of programmability limits them. Herein, we present a programmable chemical processor comprising of a 5 by 5 array of cells filled with a switchable oscillating chemical (Belousov-Zhabotinsky) reaction. Each cell can be individually addressed in the 'on' or 'off' state, yielding more than 2.9 × 10 chemical states which arise from the ability to detect distinct amplitudes of oscillations via image processing. By programming the array of interconnected BZ reactions we demonstrate chemically encoded and addressable memory, and we create a chemical Autoencoder for pattern recognition able to perform the equivalent of one million operations per second.
当前的计算机受到 von Neumann 瓶颈的限制,这限制了处理单元和内存之间的吞吐量。化学过程有可能超越当前的计算架构进行扩展,因为处理单元和内存位于同一空间中,通过化学反应执行计算,但它们缺乏可编程性限制了它们的发展。在这里,我们提出了一种可编程化学处理器,它由一个 5 乘 5 的单元阵列组成,其中填充了可切换的振荡化学(Belousov-Zhabotinsky)反应。每个单元都可以单独设置为“开”或“关”状态,产生超过 2.9 × 10 的化学状态,这是通过图像处理检测到不同幅度的振荡的能力产生的。通过对互连的 BZ 反应进行编程,我们展示了化学编码和可寻址内存,并且我们创建了一个用于模式识别的化学自动编码器,它能够每秒执行相当于一百万次操作。