饮食蛋氨酸饥饿会损害急性髓系白血病的进展。
Dietary methionine starvation impairs acute myeloid leukemia progression.
机构信息
Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
Institut für Organische Chemie und Chemische Biologie, Zentrum für Biomolekulare Magnetische Resonanz, Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany.
出版信息
Blood. 2022 Nov 10;140(19):2037-2052. doi: 10.1182/blood.2022017575.
Targeting altered tumor cell metabolism might provide an attractive opportunity for patients with acute myeloid leukemia (AML). An amino acid dropout screen on primary leukemic stem cells and progenitor populations revealed a number of amino acid dependencies, of which methionine was one of the strongest. By using various metabolite rescue experiments, nuclear magnetic resonance-based metabolite quantifications and 13C-tracing, polysomal profiling, and chromatin immunoprecipitation sequencing, we identified that methionine is used predominantly for protein translation and to provide methyl groups to histones via S-adenosylmethionine for epigenetic marking. H3K36me3 was consistently the most heavily impacted mark following loss of methionine. Methionine depletion also reduced total RNA levels, enhanced apoptosis, and induced a cell cycle block. Reactive oxygen species levels were not increased following methionine depletion, and replacement of methionine with glutathione or N-acetylcysteine could not rescue phenotypes, excluding a role for methionine in controlling redox balance control in AML. Although considered to be an essential amino acid, methionine can be recycled from homocysteine. We uncovered that this is primarily performed by the enzyme methionine synthase and only when methionine availability becomes limiting. In vivo, dietary methionine starvation was not only tolerated by mice, but also significantly delayed both cell line and patient-derived AML progression. Finally, we show that inhibition of the H3K36-specific methyltransferase SETD2 phenocopies much of the cytotoxic effects of methionine depletion, providing a more targeted therapeutic approach. In conclusion, we show that methionine depletion is a vulnerability in AML that can be exploited therapeutically, and we provide mechanistic insight into how cells metabolize and recycle methionine.
靶向改变的肿瘤细胞代谢可能为急性髓系白血病 (AML) 患者提供一个有吸引力的机会。对原代白血病干细胞和祖细胞群体进行的氨基酸缺失筛选揭示了许多氨基酸依赖性,其中蛋氨酸是最强的之一。通过使用各种代谢物挽救实验、基于核磁共振的代谢物定量和 13C 追踪、多核糖体谱分析和染色质免疫沉淀测序,我们确定蛋氨酸主要用于蛋白质翻译,并通过 S-腺苷甲硫氨酸为组蛋白提供甲基,用于表观遗传标记。H3K36me3 是在失去蛋氨酸后受到影响最严重的标记。蛋氨酸耗竭还降低了总 RNA 水平,增强了细胞凋亡,并诱导细胞周期阻滞。蛋氨酸耗竭后活性氧水平没有增加,用谷胱甘肽或 N-乙酰半胱氨酸替代蛋氨酸也不能挽救表型,排除了蛋氨酸在控制 AML 中氧化还原平衡控制中的作用。尽管蛋氨酸被认为是一种必需氨基酸,但它可以从同型半胱氨酸中回收。我们发现这主要是由酶蛋氨酸合成酶完成的,并且仅在蛋氨酸可用性受到限制时才完成。在体内,饮食性蛋氨酸饥饿不仅被小鼠耐受,而且还显著延迟了细胞系和患者衍生的 AML 进展。最后,我们表明,抑制 H3K36 特异性甲基转移酶 SETD2 模拟了蛋氨酸耗竭的大部分细胞毒性作用,提供了一种更具针对性的治疗方法。总之,我们表明蛋氨酸耗竭是 AML 的一个脆弱性,可以被治疗性地利用,并且我们提供了细胞如何代谢和回收蛋氨酸的机制见解。